
Anupam Dewan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3143159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance Assessment of Different Turbulence Models for a Dual Jet Flowing Over a Heated Sinusoidal Wavy Surface. Journal of Thermal Science and Engineering Applications, 2022, 14, .	1.5	7
2	Assessment of RANS-based turbulence model for forced plume dynamics in a linearly stratified environment. Computers and Fluids, 2022, 235, 105281.	2.5	6
3	Future projections of temperature and precipitation for Antarctica. Environmental Research Letters, 2022, 17, 014029.	5.2	18
4	Investigations of heat transfer and flow characteristics of wall-bounded jets on a sinusoidal wavy surface. International Journal of Thermal Sciences, 2022, 175, 107485.	4.9	6
5	Sophisticated interplay of operating conditions governs flow field transition and optimal conversion inside tangentially fired gasifiers. Energy, 2022, 252, 123975.	8.8	3
6	Transient flow and thermal transport characteristics of wall-bounded turbulent dual jet with heated undulated wall. International Journal of Thermal Sciences, 2022, 182, 107800.	4.9	2
7	Three-dimensional wake transitions past a rectangular cylinder placed near a moving wall: Influence of aspect and gap ratios. Ocean Engineering, 2021, 219, 108288.	4.3	8
8	Effects of the Antarctic elevation on the atmospheric circulation. Theoretical and Applied Climatology, 2021, 143, 1487-1499.	2.8	6
9	In the quest of an appropriate turbulence model for analyzing the aerodynamics of a conventional Savonius (S-type) wind rotor. Journal of Renewable and Sustainable Energy, 2021, 13, .	2.0	16
10	A study on thermal characteristics of double-layered microchannel heat sink: Effects of bifurcation and flow configuration. International Journal of Thermal Sciences, 2021, 162, 106791.	4.9	18
11	Savonius wind turbines: A review of recent advances in design and performance enhancements. Materials Today: Proceedings, 2021, 47, 2976-2983.	1.8	15
12	Computational analysis of convective heat transfer properties of turbulent slot jet impingement. Engineering Computations, 2021, ahead-of-print, .	1.4	3
13	Influence of the height of Antarctic ice sheet on its climate. Polar Science, 2021, 28, 100642.	1.2	6
14	Influence of gap-ratio on flow dynamics and heat transfer for a square cylinder approaching a moving wall in turbulent regime. International Journal of Heat and Mass Transfer, 2021, 172, 121122.	4.8	5
15	Response of the Atmosphere to Orographic Forcings: Insight from Idealised Simulations. Journals of the Atmospheric Sciences, 2021, , .	1.7	1
16	Reynolds-Averaged Navier-Stokes modeling of a turbulent forced plume in a stratified medium. Materials Today: Proceedings, 2021, 47, 3068-3068.	1.8	2
17	Impact of the Antarctic topography on meridional energy transport and its consequential effect in the monsoon circulation. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3286-3296.	2.7	2
18	Effects of wake confinement and buoyancy on three-dimensional flow transitions for a square cylinder near a moving wall. Physics of Fluids, 2021, 33, .	4.0	3

#	Article	IF	CITATIONS
19	Computational Study of 16 kWth Furnace Cofired Using Pulverized Bituminous Coal and Liquified Petroleum Gas Operated in Un-Staged and Air-Staged Conditions. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	2
20	Influence of three-dimensional wake transition on heat transfer from a square cylinder near a moving wall. International Journal of Heat and Mass Transfer, 2020, 148, 118986.	4.8	11
21	Stability analysis of cross buoyancy flow past a circular cylinder using OpenFOAM. Materials Today: Proceedings, 2020, 28, 2057-2061.	1.8	0
22	Computational study of non-reactive swirling flow in tangentially-fired configuration gasifier. Materials Today: Proceedings, 2020, 28, 2053-2056.	1.8	1
23	Thermal performance study of double-layer microchannel with bifurcation. Thermal Science and Engineering Progress, 2020, 17, 100481.	2.7	4
24	A study of turbulent heat transfer in convergent-divergent shaped microchannel with ribs and cavities using CFD. Journal of Mechanical Engineering and Sciences, 2020, 14, 6344-6361.	0.6	4
25	Flow and thermal characteristics of jet impingement on a flat plate for small nozzle to plate spacing using LES. International Journal of Thermal Sciences, 2019, 145, 106005.	4.9	14
26	Development of a novel thermal model for a PV/T collector and its experimental analysis. Solar Energy, 2019, 188, 631-643.	6.1	39
27	Study of convective heat transfer in turbulent jet impingement using SAS and LES modelling. AIP Conference Proceedings, 2019, , .	0.4	1
28	Feasibility study of installation of MW level grid connected solar photovoltaic power plant for northeastern region of India. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	1.3	6
29	Computational study of coal combustion in an entrained flow furnace. AIP Conference Proceedings, 2019, , .	0.4	2
30	Thermofluid Characteristics of Czochralski Melt Convection Using 3D URANS Computations. Journal of Thermal Science and Engineering Applications, 2019, 11, .	1.5	2
31	Influence of wake confinement and buoyancy on flow past a square cylinder. Fluid Dynamics Research, 2019, 51, 035502.	1.3	6
32	A study of thermo-fluid characteristics of Czochralski melt using rotation and curvature corrected Partially-Averaged Navier-Stokes (PANS) turbulence models. International Journal of Thermal Sciences, 2019, 140, 50-58.	4.9	6
33	OpenFOAM based LES of slot jet impingement heat transfer at low nozzle to plate spacing using four SGS models. Heat and Mass Transfer, 2019, 55, 911-931.	2.1	26
34	Deciphering the flow structure of Czochralski melt using Partially Averaged Navier–Stokes (PANS) method. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	1.3	16
35	Effect of Bifurcation on Thermal Characteristics of Convergent-Divergent Shaped Microchannel. Journal of Thermal Science and Engineering Applications, 2018, 10, .	1.5	4
36	Partially-Averaged Navier-Stokes (PANS) approach for study of fluid flow and heat transfer characteristics in Czochralski melt. Journal of Crystal Growth, 2018, 481, 56-64.	1.5	7

#	Article	IF	CITATIONS
37	Heat transfer and flow characteristics of turbulent slot jet impingement on plane and ribbed surfaces. Thermophysics and Aeromechanics, 2018, 25, 717-734.	0.5	8
38	Assessment of Characteristics of Phase Change Region during Solidification of a Binary Alloy in Different Flow Regimes. Materials Today: Proceedings, 2017, 4, 9445-9449.	1.8	0
39	A PANS study of fluid flow and heat transfer from a square cylinder approaching a plane wall. International Journal of Thermal Sciences, 2017, 120, 321-336.	4.9	13
40	Flow and thermal characteristics of jet impingement: comprehensive review. International Journal of Heat and Technology, 2017, 35, 153-166.	0.6	66
41	Flow and heat transfer characteristics in convergent-divergent shaped microchannel with ribs and cavities. International Journal of Heat and Technology, 2017, 35, 863-873.	0.6	17
42	Analysis of Interrupted Rectangular Microchannel Heat Sink with High Aspect Ratio. Journal of Applied Fluid Mechanics, 2017, 10, 117-126.	0.2	6
43	A review on recent developments in solar distillation units. Sadhana - Academy Proceedings in Engineering Sciences, 2016, 41, 203-223.	1.3	27
44	A study of LES–SGS closure models applied to a square buoyant cavity. International Journal of Heat and Mass Transfer, 2016, 98, 164-175.	4.8	18
45	Effect of side ratio on fluid flow and heat transfer from rectangular cylinders using the PANS method. International Journal of Heat and Fluid Flow, 2016, 61, 309-322.	2.4	16
46	Computational study on effects of rib height and thickness on heat transfer enhancement in a rib roughened square channel. Sadhana - Academy Proceedings in Engineering Sciences, 2016, 41, 667-678.	1.3	10
47	CFD study of slot jet impingement heat transfer with nanofluids. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 206-220.	2.1	11
48	Large Eddy Simulation of Turbulent Slot Jet Impingement Heat Transfer at Small Nozzle-to-Plate Spacing. Heat Transfer Engineering, 2016, 37, 1242-1251.	1.9	16
49	Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling. Journal of Applied Fluid Mechanics, 2016, 9, 1367-1379.	0.2	1
50	Solidification with Buoyancy Induced Convection: Evaluation of Different Mushy Zone Formulations. Proceedings of the Indian National Science Academy, 2016, .	1.4	0
51	Partially Averaged Navier Stokes simulation of turbulent heat transfer from a square cylinder. International Journal of Heat and Mass Transfer, 2015, 89, 251-266.	4.8	27
52	Partially-averaged Navier–Stokes method for turbulent thermal plume. Heat and Mass Transfer, 2015, 51, 1655-1667.	2.1	8
53	A review of heat transfer enhancement through flow disruption in a microchannel. Journal of Thermal Science, 2015, 24, 203-214.	1.9	77
54	Solidification Modeling: Evolution, Benchmarks, Trends in Handling Turbulence, and Future Directions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1456-1471.	2.1	21

#	Article	IF	CITATIONS
55	Computational Models for Turbulent Thermal Plumes: Recent Advances and Challenges. Heat Transfer Engineering, 2014, 35, 367-383.	1.9	12
56	URANS computations with buoyancy corrected turbulence models for turbulent thermal plume. International Journal of Heat and Mass Transfer, 2014, 72, 680-689.	4.8	31
57	LES of a Turbulent Slot Impinging Jet to Predict Fluid Flow and Heat Transfer. Numerical Heat Transfer; Part A: Applications, 2013, 64, 759-776.	2.1	15
58	Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. International Journal of Heat and Mass Transfer, 2013, 65, 750-764.	4.8	77
59	Assessment of Buoyancy-Corrected Turbulence Models for Thermal Plumes. Engineering Applications of Computational Fluid Mechanics, 2013, 7, 239-249.	3.1	11
60	Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer. Heat Transfer Engineering, 2012, 33, 447-460.	1.9	137
61	Models Based on Boussinesq Approximation. , 2011, , 49-57.		1
62	Tackling Turbulent Flows in Engineering. , 2011, , .		38
63	Fluid Turbulence. , 2011, , 19-29.		1
64	Reynolds-Stress and Scalar Flux Transport Model. , 2011, , 81-89.		0
65	Characteristics of Some Important Turbulent Flows. , 2011, , 31-42.		Ο
66	Some Case Studies. , 2011, , 105-115.		1
67	A Multigrid-Accelerated Code on Graded Cartesian Meshes for 2D Time-Dependent Incompressible Viscous Flows. Engineering Applications of Computational Fluid Mechanics, 2010, 4, 71-90.	3.1	5
68	A Multigrid-Accelerated Three-Dimensional Transient-Flow Code and its Application to a New Test Problem. Journal of Hydrodynamics, 2010, 22, 838-846.	3.2	3
69	The effect of fin spacing and material on the performance of a heat sink with circular pin fins. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224, 35-46.	1.4	15
70	Analysis of Non-Darcy Models for Mixed Convection in a Porous Cavity Using a Multigrid Approach. Numerical Heat Transfer; Part A: Applications, 2009, 56, 685-708.	2.1	38
71	Numerical investigation of coupled heat and mass transfer during desorption of hydrogen in metal hydride beds. Energy Conversion and Management, 2009, 50, 69-75.	9.2	50
72	Computational study of metal hydride cooling system. International Journal of Hydrogen Energy, 2009, 34, 3164-3172.	7.1	52

#	Article	IF	CITATIONS
73	A Comparison of Tapered and Straight Circular Pin-Fin Compact Heat Exchangers for Electronic Appliances. Journal of Enhanced Heat Transfer, 2009, 16, 301-314.	1.1	1
74	An Investigation of Turbulent Rectangular Jet Discharged into a Narrow Channel Weak Crossflow. Journal of Hydrodynamics, 2008, 20, 154-163.	3.2	6
75	Distribution of Temperature as a Passive Scalar in the Flow Field of a Heated Turbulent Jet in a Crossflow. Numerical Heat Transfer; Part A: Applications, 2008, 54, 67-92.	2.1	3
76	Effect of Height and Position of Dams on Inclusion Removal in a Six Strand Tundish. ISIJ International, 2008, 48, 154-160.	1.4	58
77	Parametric studies on a metal hydride based hydrogen storage device. International Journal of Hydrogen Energy, 2007, 32, 4988-4997.	7.1	78
78	Effect of streamline curvature on flow field of a turbulent plane jet in cross-flow. Mechanics Research Communications, 2007, 34, 241-248.	1.8	8
79	Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller: Experimental and numerical investigations. Chemical Engineering Science, 2006, 61, 2815-2822.	3.8	52
80	Strategy for selection of elements for heat transfer enhancement. International Journal of Heat and Mass Transfer, 2006, 49, 3392-3400.	4.8	42
81	Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. International Journal of Heat and Mass Transfer, 2006, 49, 3914-3928.	4.8	19
82	Performance Optimizations of Grid Disc Impellers for Mixing of Single-Phase Flows in a Stirred Vessel. Chemical Engineering Research and Design, 2006, 84, 691-702.	5.6	11
83	Heat transfer enhancement by pin elements. International Journal of Heat and Mass Transfer, 2005, 48, 4738-4747.	4.8	61
84	An assessment of streamline curvature effects on the mixing region of a turbulent plane jet in crossflow. Applied Mathematical Modelling, 2005, 29, 711-725.	4.2	9
85	Numerical Study of Three-Dimensional Jets Using Point Source Method. International Journal of Turbo and Jet Engines, 2005, 22, .	0.7	0
86	Comparison of three buoyancy extended versions of the k–ϵ–t′2 model in predicting turbulent plane plume. Applied Mathematical Modelling, 2004, 28, 241-254.	4.2	1
87	Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2004, 218, 509-527.	1.4	307
88	PREDICTION OF TURBULENT PLANE JET IN CROSSFLOW. Numerical Heat Transfer; Part A: Applications, 2002, 41, 101-111.	2.1	30
89	Computation of the turbulent plane plume using the k–ĩµâ€"t′2–γ model. Applied Mathematical Modelling 2000, 24, 815-826.	^{g,} 4.2	8
90	Use of kâ~ʾεâ^ʾγ Model to Predict Intermittency in Turbulent Boundary-Layers. Journal of Fluids Engineering, Transactions of the ASME, 2000, 122, 542-546.	1.5	2

#	Article	IF	CITATIONS
91	A new turbulence model for the axisymmetric plume. Applied Mathematical Modelling, 1997, 21, 709-719.	4.2	19
92	Comparison of four turbulence models for wall-bounded flows affected by transverse curvature. AIAA Journal, 1996, 34, 842-844.	2.6	3
93	A note on high Schmidt number laminar bouyant jets discharged horizontally. International Communications in Heat and Mass Transfer, 1992, 19, 721-731.	5.6	6
94	Potential effects of the projected Antarctic sea-ice loss on the climate system. Climate Dynamics, 0, , .	3.8	0