Bao-Zhong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3143017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nature Immunology, 2010, 11, 1127-1135.	7.0	644
2	Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nature Communications, 2018, 9, 359.	5.8	147
3	Incorporation of Membrane-Anchored Flagellin into Influenza Virus-Like Particles Enhances the Breadth of Immune Responses. Journal of Virology, 2008, 82, 11813-11823.	1.5	118
4	Influenza Virus-Like Particles Containing M2 Induce Broadly Cross Protective Immunity. PLoS ONE, 2011, 6, e14538.	1.1	104
5	Enhanced Immunogenicity of Stabilized Trimeric Soluble Influenza Hemagglutinin. PLoS ONE, 2010, 5, e12466.	1.1	102
6	Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine, 2010, 28, 4103-4112.	1.7	99
7	Intranasal Immunization with Influenza VLPs Incorporating Membrane-Anchored Flagellin Induces Strong Heterosubtypic Protection. PLoS ONE, 2010, 5, e13972.	1.1	82
8	Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7758-E7767.	3.3	81
9	Incorporation of High Levels of Chimeric Human Immunodeficiency Virus Envelope Glycoproteins into Virus-Like Particles. Journal of Virology, 2007, 81, 10869-10878.	1.5	80
10	Protective Effect of Ginseng Polysaccharides on Influenza Viral Infection. PLoS ONE, 2012, 7, e33678.	1.1	73
11	Microneedle delivery of an M2e-TLR5 ligand fusion protein to skin confers broadly cross-protective influenza immunity. Journal of Controlled Release, 2014, 178, 1-7.	4.8	72
12	Microneedle Vaccination with Stabilized Recombinant Influenza Virus Hemagglutinin Induces Improved Protective Immunity. Vaccine Journal, 2011, 18, 647-654.	3.2	71
13	Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1349-1360.	1.7	66
14	Enhanced Mucosal Immune Responses to HIV Virus-Like Particles Containing a Membrane-Anchored Adjuvant. MBio, 2011, 2, e00328-10.	1.8	62
15	Multiple heterologous M2 extracellular domains presented on virus-like particles confer broader and stronger M2 immunity than live influenza A virus infection. Antiviral Research, 2013, 99, 328-335.	1.9	61
16	Universal Influenza Vaccines, a Dream to Be Realized Soon. Viruses, 2014, 6, 1974-1991.	1.5	60
17	CCL28 chemokine: An anchoring point bridging innate and adaptive immunity. International Immunopharmacology, 2017, 51, 165-170.	1.7	60
18	Nanoclusters self-assembled from conformation-stabilized influenza M2e as broadly cross-protective influenza vaccines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 473-482.	1.7	55

BAO-ZHONG WANG

#	Article	IF	CITATIONS
19	Enhanced Influenza Virus-Like Particle Vaccines Containing the Extracellular Domain of Matrix Protein 2 and a Toll-Like Receptor Ligand. Vaccine Journal, 2012, 19, 1119-1125.	3.2	45
20	A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines. Journal of Controlled Release, 2017, 261, 1-9.	4.8	43
21	Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. International Journal of Nanomedicine, 2017, Volume 12, 4747-4762.	3.3	41
22	Intranasal vaccination with influenza HA/GO-PEI nanoparticles provides immune protection against homo- and heterologous strains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
23	Protein nanoparticle vaccine based on flagellin carrier fused to influenza conserved epitopes confers full protection against influenza A virus challenge. Virology, 2017, 509, 82-89.	1.1	38
24	Universal influenza vaccines: from viruses to nanoparticles. Expert Review of Vaccines, 2018, 17, 967-976.	2.0	38
25	Salmonella flagellin enhances mucosal immunity of avian influenza vaccine in chickens. Veterinary Microbiology, 2012, 157, 69-77.	0.8	36
26	Antiviral Activity of Fermented Ginseng Extracts against a Broad Range of Influenza Viruses. Viruses, 2018, 10, 471.	1.5	35
27	Double‣ayered M2eâ€NA Protein Nanoparticle Immunization Induces Broad Crossâ€Protection against Different Influenza Viruses in Mice. Advanced Healthcare Materials, 2020, 9, e1901176.	3.9	32
28	Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 253-262.	1.7	30
29	A Perspective on Nanoparticle Universal Influenza Vaccines. ACS Infectious Diseases, 2018, 4, 1656-1665.	1.8	29
30	Applications of chemokines as adjuvants for vaccine immunotherapy. Immunobiology, 2018, 223, 477-485.	0.8	27
31	Virus-Like Particles Containing the Tetrameric Ectodomain of Influenza Matrix Protein 2 and Flagellin Induce Heterosubtypic Protection in Mice. BioMed Research International, 2013, 2013, 1-12.	0.9	24
32	Promising Adjuvants and Platforms for Influenza Vaccine Development. Pharmaceutics, 2021, 13, 68.	2.0	23
33	Protocatechuic Acid, a Novel Active Substance against Avian Influenza Virus H9N2 Infection. PLoS ONE, 2014, 9, e111004.	1.1	21
34	Incorporation of a GPI-anchored engineered cytokine as a molecular adjuvant enhances the immunogenicity of HIV VLPs. Scientific Reports, 2015, 5, 11856.	1.6	21
35	Host―and pathogenâ€derived adjuvant coatings on protein nanoparticle vaccines. Bioengineering and Translational Medicine, 2017, 2, 120-130.	3.9	21
36	From Variation of Influenza Viral Proteins to Vaccine Development. International Journal of Molecular Sciences, 2017, 18, 1554.	1.8	21

BAO-ZHONG WANG

#	Article	IF	CITATIONS
37	Chimeric virus-like particles containing influenza HA antigen and GPI-CCL28 induce long-lasting mucosal immunity against H3N2 viruses. Scientific Reports, 2017, 7, 40226.	1.6	20
38	Structural studies of an eukaryotic cambialistic superoxide dismutase purified from the mature seeds of camphor tree. Archives of Biochemistry and Biophysics, 2002, 404, 218-226.	1.4	19
39	The lower cytotoxicity of cinnamomin (a type II RIP) is due to its B-chain. Archives of Biochemistry and Biophysics, 2006, 451, 91-96.	1.4	19
40	Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology, 2016, 489, 141-150.	1.1	17
41	Enhanced Immune Responses Conferring Cross-Protection by Skin Vaccination With a Tri-Component Influenza Vaccine Using a Microneedle Patch. Frontiers in Immunology, 2018, 9, 1705.	2.2	16
42	Broad cross protection by recombinant live attenuated influenza H3N2 seasonal virus expressing conserved M2 extracellular domain in a chimeric hemagglutinin. Scientific Reports, 2021, 11, 4151.	1.6	16
43	Co-delivery of GPI-anchored CCL28 and influenza HA in chimeric virus-like particles induces cross-protective immunity against H3N2 viruses. Journal of Controlled Release, 2016, 233, 208-219.	4.8	14
44	Sequential Immunizations with heterosubtypic virus-like particles elicit cross protection against divergent influenza A viruses in mice. Scientific Reports, 2018, 8, 4577.	1.6	14
45	An Update on mRNA-Based Viral Vaccines. Vaccines, 2021, 9, 965.	2.1	14
46	Polycationic HA/CpG Nanoparticles Induce Cross-Protective Influenza Immunity in Mice. ACS Applied Materials & Interfaces, 2022, 14, 6331-6342.	4.0	14
47	Virus-like particles presenting flagellin exhibit unique adjuvant effects on eliciting T helper type 1 humoral and cellular immune responses to poor immunogenic influenza virus M2e protein vaccine. Virology, 2018, 524, 172-181.	1.1	12
48	Skin Vaccination with Dissolvable Microneedle Patches Incorporating Influenza Neuraminidase and Flagellin Protein Nanoparticles Induces Broad Immune Protection against Multiple Influenza Viruses. ACS Applied Bio Materials, 2021, 4, 4953-4961.	2.3	12
49	Structural and functional studies of cinnamomin, a new type II ribosome-inactivating protein isolated from the seeds of the camphor tree. FEBS Journal, 2001, 268, 5723-5733.	0.2	11
50	Immunogenicity and Neutralizing Activity Comparison of SARS-CoV-2 Spike Full-Length and Subunit Domain Proteins in Young Adult and Old-Aged Mice. Vaccines, 2021, 9, 316.	2.1	11
51	SARSâ€CoVâ€2 Spike Stem Protein Nanoparticles Elicited Broad ADCC and Robust Neutralization against Variants in Mice. Small, 2022, 18, .	5.2	11
52	H7 Hemagglutinin nanoparticles retain immunogenicity after >3 months of 25°C storage. PLoS ONE, 2018, 13, e0202300.	1.1	10
53	Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies. Scientific Reports, 2018, 8, 7807.	1.6	8
54	Flagellin-expressing virus-like particles exhibit adjuvant effects on promoting IgG isotype-switched long-lasting antibody induction and protection of influenza vaccines in CD4-deficient mice. Vaccine, 2019, 37, 3426-3434.	1.7	8

BAO-ZHONG WANG

#	Article	IF	CITATIONS
55	Influenza NP core and HA or M2e shell double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102479.	1.7	8
56	A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine. Npj Vaccines, 2022, 7, .	2.9	7
57	Cleavage of Supercoiled Circular Double-stranded DNA Induced by a Eukaryotic Cambialistic Superoxide Dismutase from Cinnamomum camphora. Acta Biochimica Et Biophysica Sinica, 2004, 36, 609-617.	0.9	5
58	Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins. Vaccines, 2017, 5, 52.	2.1	5
59	Refolding of partially thermo-unfolded cinnamomin A-chain mediated by B-chain. Biochemical and Biophysical Research Communications, 2003, 306, 39-45.	1.0	4
60	Influenza Vaccines toward Universality through Nanoplatforms and Given by Microneedle Patches. Viruses, 2020, 12, 1212.	1.5	4
61	Layered protein nanoparticles containing influenza B HA stalk induced sustained cross-protection against viruses spanning both viral lineages. Biomaterials, 2022, 287, 121664.	5.7	4
62	Comparative Studies of Three Type II Ribosome-Inactivating Proteins from the Seeds of Three Species of the Genus Cinnamomum. Protein and Peptide Letters, 2001, 8, 193-200.	0.4	2
63	Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. Advanced NanoBiomed Research, 2022, 2, .	1.7	2
64	Are long-term influenza vaccines possible and how do we discover them?. Expert Opinion on Drug Discovery, 2021, 16, 213-216.	2.5	1
65	Comparative Study of Interaction of Two Type Ii Ribosome-Inactivating Proteins And Their A-Chains With Model Membrane. Protein and Peptide Letters, 2004, 11, 157-163.	0.4	1
66	Thermostable H1 hemagglutinin stem with M2e epitopes provides broad cross-protection against group1 and 2 influenza A viruses. Molecular Therapy - Methods and Clinical Development, 2022, 26, 38-51.	1.8	1