Christopher F Van Der Walle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142868/publications.pdf Version: 2024-02-01

Christopher F Van Der

#	Article	IF	CITATIONS
1	Cluster Percolation Causes Shear Thinning Behavior in Concentrated Solutions of Monoclonal Antibodies. Molecular Pharmaceutics, 2021, 18, 2669-2682.	4.6	9
2	Formulation Considerations for Autologous T Cell Drug Products. Pharmaceutics, 2021, 13, 1317.	4.5	4
3	Inhibiting the fibrillation of a GLP-1-like peptide. International Journal of Pharmaceutics, 2020, 574, 118923.	5.2	6
4	Advancing Therapeutic Protein Discovery and Development through Comprehensive Computational and Biophysical Characterization. Molecular Pharmaceutics, 2020, 17, 426-440.	4.6	25
5	Improved Physical Stability of an Antibody–Drug Conjugate Using Host–Guest Chemistry. Bioconjugate Chemistry, 2020, 31, 123-129.	3.6	6
6	Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules, 2020, 25, 2047.	3.8	20
7	Micro- and macro-viscosity relations in high concentration antibody solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 211-221.	4.3	8
8	Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry, 2019, 58, 3413-3421.	2.5	24
9	Determination of Protein–Protein Interactions in a Mixture of Two Monoclonal Antibodies. Molecular Pharmaceutics, 2019, 16, 4775-4786.	4.6	17
10	Interfacial Adsorption of a Monoclonal Antibody and Its Fab and Fc Fragments at the Oil/Water Interface. Langmuir, 2019, 35, 13543-13552.	3.5	12
11	Observation of high-temperature macromolecular confinement in lyophilised protein formulations using terahertz spectroscopy. International Journal of Pharmaceutics: X, 2019, 1, 100022.	1.6	11
12	Terahertz Spectroscopy: An Investigation of the Structural Dynamics of Freeze-Dried Poly Lactic-co-glycolic Acid Microspheres. Pharmaceutics, 2019, 11, 291.	4.5	8
13	Interaction of a Macrocycle with an Aggregation-Prone Region of a Monoclonal Antibody. Molecular Pharmaceutics, 2019, 16, 3100-3108.	4.6	7
14	Application of Magnetic Resonance to Assess Lyophilized Drug Product Reconstitution. Pharmaceutical Research, 2019, 36, 71.	3.5	2
15	¹⁹ F Dark-State Exchange Saturation Transfer NMR Reveals Reversible Formation of Protein-Specific Large Clusters in High-Concentration Protein Mixtures. Analytical Chemistry, 2019, 91, 4702-4708.	6.5	11
16	Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. Nanoscale, 2019, 11, 21155-21166.	5.6	11
17	Synthetic glycopolymers as modulators of protein aggregation: influences of chemical composition, topology and concentration. Journal of Materials Chemistry B, 2018, 6, 1044-1054.	5.8	13
18	Interfacial Adsorption of Monoclonal Antibody COE-3 at the Solid/Water Interface. ACS Applied Materials & Interfaces, 2018, 10, 1306-1316.	8.0	16

#	Article	IF	CITATIONS
19	Coadsorption of a Monoclonal Antibody and Nonionic Surfactant at the SiO2/Water Interface. ACS Applied Materials & Interfaces, 2018, 10, 44257-44266.	8.0	7
20	Novel salts of dipicolinic acid as viscosity modifiers for high concentration antibody solutions. International Journal of Pharmaceutics, 2018, 548, 682-688.	5.2	10
21	Control of Peptide Aggregation and Fibrillation by Physical PEGylation. Biomacromolecules, 2018, 19, 3958-3969.	5.4	9
22	¹⁹ F NMR as a Tool for Monitoring Individual Differentially Labeled Proteins in Complex Mixtures. Molecular Pharmaceutics, 2018, 15, 2785-2796.	4.6	10
23	Evaluation of aggregate and silicone-oil counts in pre-filled siliconized syringes: An orthogonal study characterising the entire subvisible size range. International Journal of Pharmaceutics, 2017, 519, 58-66.	5.2	16
24	Antibody adsorption on the surface of water studied by neutron reflection. MAbs, 2017, 9, 466-475.	5.2	21
25	The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 18-30.	4.3	43
26	Dipicolinic acid as a novel spore-inspired excipient for antibody formulation. International Journal of Pharmaceutics, 2017, 526, 332-338.	5.2	4
27	Investigating Liquid–Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl. Molecular Pharmaceutics, 2017, 14, 2852-2860.	4.6	25
28	Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb. ACS Applied Materials & Interfaces, 2017, 9, 23202-23211.	8.0	19
29	A simple supramolecular assay for drug detection in urine. Chemical Communications, 2017, 53, 8842-8845.	4.1	17
30	Coarse-Grained Modeling of Antibodies from Small-Angle Scattering Profiles. Journal of Physical Chemistry B, 2017, 121, 8276-8290.	2.6	30
31	Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Scientific Reports, 2016, 6, 38644.	3.3	89
32	High Affinity Recognition of a Selected Amino Acid Epitope within a Protein by Cucurbit[8]uril Complexation. Angewandte Chemie - International Edition, 2016, 55, 14000-14004.	13.8	52
33	Characterizing monoclonal antibody formulations in arginine glutamate solutions using ¹ H NMR spectroscopy. MAbs, 2016, 8, 1245-1258.	5.2	31
34	A novel combined strategy for the physical PEGylation of polypeptides. Journal of Controlled Release, 2016, 226, 35-46.	9.9	17
35	The effects of arginine glutamate, a promising excipient for protein formulation, on cell viability: Comparisons with NaCl. Toxicology in Vitro, 2016, 33, 88-98.	2.4	14
36	Selective, non-covalent conjugation of synthetic peptides with recombinant proteins mediated by host–guest chemistry. Chemical Communications, 2016, 52, 4235-4238.	4.1	16

#	Article	IF	CITATIONS
37	Modulation of the Hydration Water Around Monoclonal Antibodies on Addition of Excipients Detected by Terahertz Time-Domain Spectroscopy. Journal of Pharmaceutical Sciences, 2015, 104, 4025-4033.	3.3	13
38	Characterisation of Stress-Induced Aggregate Size Distributions and Morphological Changes of a Bi-Specific Antibody Using Orthogonal Techniques. Journal of Pharmaceutical Sciences, 2015, 104, 2473-2481.	3.3	13
39	Interrogating protonated/deuterated fibronectin fragment layers adsorbed to titania by neutron reflectivity and their concomitant control over cell adhesion. Journal of the Royal Society Interface, 2015, 12, 20150164.	3.4	2
40	Insights into the influence of the cooling profile on the reconstitution times of amorphous lyophilized protein formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 247-254.	4.3	46
41	Specific Ion and Buffer Effects on Protein–Protein Interactions of a Monoclonal Antibody. Molecular Pharmaceutics, 2015, 12, 179-193.	4.6	124
42	The effect of arginine glutamate on the stability of monoclonal antibodies in solution. International Journal of Pharmaceutics, 2014, 473, 126-133.	5.2	64
43	The Role of Electrostatics in Protein–Protein Interactions of a Monoclonal Antibody. Molecular Pharmaceutics, 2014, 11, 2475-2489.	4.6	137
44	The effect of palmitoylation on the conformation and physical stability of a model peptide hormone. International Journal of Pharmaceutics, 2014, 472, 156-164.	5.2	13
45	Therapeutic antibodies: Market considerations, disease targets and bioprocessing. International Journal of Pharmaceutics, 2013, 440, 83-98.	5.2	208
46	Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: Development, pharmacokinetics, biodistribution and pharmacodynamics. International Journal of Pharmaceutics, 2013, 440, 99-110.	5.2	32
47	Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces. MAbs, 2013, 5, 126-139.	5.2	50
48	Interaction and destabilization of a monoclonal antibody and albumin to surfaces of varying functionality and hydrophobicity. International Journal of Pharmaceutics, 2012, 438, 71-80.	5.2	9
49	Bioprocessing of bacteriophages via rapid drying onto microcrystals. Biotechnology Progress, 2012, 28, 540-548.	2.6	4
50	Towards a Bottom-up Approach for Mimicking Marine Sponge Spicules. Silicon, 2012, 4, 23-31.	3.3	2
51	Clustered integrin $\hat{l}\pm5\hat{l}^21$ ligand displays model fibronectin-mediated adhesion of human endometrial stromal cells. Biochemical and Biophysical Research Communications, 2011, 407, 777-782.	2.1	7
52	Cloning, expression and structure determination of the major extracellular domain of the PepT***1 oligopeptide transporter. Journal of Pharmacy and Pharmacology, 2011, 50, 234-234.	2.4	0
53	Solution-structure of a Peptide Designed to Mimic the C-terminal Hexapeptide of Endothelin. Journal of Pharmacy and Pharmacology, 2011, 50, 837-844.	2.4	1
54	Control of Mammalian Cell Behaviour Through Mimicry of the Extracellular Matrix Environment. , 2011, , .		1

#	Article	IF	CITATIONS
55	Lyophilized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: In vitro evaluation. International Journal of Pharmaceutics, 2011, 416, 280-287.	5.2	37
56	Perfusion culture enhanced human endometrial stromal cell growth in alginateâ€multivalent integrin α5β1 ligand scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 99A, 211-220.	4.0	11
57	An Overview of the Field of Peptide and Protein Delivery. , 2011, , 1-22.		3
58	Modulation of the Intestinal Tight Junctions Using Bacterial Enterotoxins. , 2011, , 195-219.		3
59	A tetravalent RGD ligand for integrin-mediated cell adhesion. Journal of Pharmacy and Pharmacology, 2010, 58, 959-966.	2.4	14
60	lsolation of recombinant proteins from culture broth by coâ€precipitation with an amino acid carrier to form stable dry powders. Biotechnology and Bioengineering, 2010, 106, 764-773.	3.3	8
61	Crossâ€ŧalk between the insulinâ€ŀike growth factor (IGF) axis and membrane integrins to regulate cell physiology. Journal of Cellular Physiology, 2010, 224, 605-611.	4.1	32
62	Stabilization of bacteriophage during freeze drying. International Journal of Pharmaceutics, 2010, 389, 168-175.	5.2	69
63	Microemulsions for oral delivery of insulin: Design, development and evaluation in streptozotocin induced diabetic rats. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 159-169.	4.3	118
64	Silica Condensation by a Silicatein Î \pm Homologue Involves Surface-Induced Transition to a Stable Structural Intermediate Forming a Saturated Monolayer. Biomacromolecules, 2010, 11, 3126-3135.	5.4	12
65	Current approaches to stabilising and analysing proteins during microencapsulation in PLGA. Expert Opinion on Drug Delivery, 2009, 6, 177-186.	5.0	56
66	Oligomerisation and thermal stability of polyvalent integrin α5β1 ligands. Biophysical Chemistry, 2009, 142, 34-39.	2.8	5
67	A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 26-33.	4.3	91
68	IGFBP-3 and IGFBP-5 associate with the cell binding domain (CBD) of fibronectin. Biochemical and Biophysical Research Communications, 2009, 381, 572-576.	2.1	14
69	Dimeric integrin α5β1 ligands confer morphological and differentiation responses to murine embryonic stem cells. Biochemical and Biophysical Research Communications, 2009, 390, 716-721.	2.1	10
70	Orientation and surface coverage of adsorbed fibronectin cell binding domains and bound integrin α5β1 receptors. Soft Matter, 2009, 5, 3954.	2.7	14
71	Engineering Biodegradable Polyester Particles With Specific Drug Targeting and Drug Release Properties. Journal of Pharmaceutical Sciences, 2008, 97, 71-87.	3.3	248
72	Interdomain mobility and conformational stability of type III fibronectin domain pairs control surface adsorption, desorption and unfolding. Colloids and Surfaces B: Biointerfaces, 2008, 64, 1-9.	5.0	11

#	Article	IF	CITATIONS
73	Crystal structure and silica condensing activities of silicatein α–cathepsin L chimeras. Chemical Communications, 2008, , 1765.	4.1	51
74	A heparin binding motif on the pro-domain of human procathepsin L mediates zymogen destabilization and activation. Biochemical and Biophysical Research Communications, 2008, 366, 862-867.	2.1	20
75	Microrheology of Bacterial Biofilms In Vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir, 2008, 24, 13549-13555.	3.5	96
76	Self-assembling multimeric integrin Â5Â1 ligands for cell attachment and spreading. Protein Engineering, Design and Selection, 2008, 21, 553-560.	2.1	17
77	The Heavy-Light Chain Loop of Human Cathepsin-L Modulates Its Activity and Stability. Protein and Peptide Letters, 2008, 15, 47-53.	0.9	7
78	Engineering Silica Particles as Oral Drug Delivery Vehicles. Current Pharmaceutical Design, 2008, 14, 1821-1831.	1.9	57
79	Solution formulation and lyophilisation of a recombinant fibronectin fragment. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 309-319.	4.3	11
80	Tight junction modulation and biochemical characterisation of the zonula occludens toxin C-and N-termini. FEBS Letters, 2007, 581, 2974-2980.	2.8	40
81	Physical ageing and thermal analysis of PLGA microspheres encapsulating protein or DNA. International Journal of Pharmaceutics, 2007, 339, 112-120.	5.2	42
82	PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA. International Journal of Pharmaceutics, 2006, 311, 97-107.	5.2	65
83	The Influence of Surfactant on PLGA Microsphere Glass Transition and Water Sorption: Remodeling the Surface Morphology to Attenuate the Burst Release. Pharmaceutical Research, 2006, 23, 1295-1305.	3.5	102
84	Emulsifying performance of modular Â-sandwich proteins: the hydrophobic moment and conformational stability. Protein Engineering, Design and Selection, 2006, 19, 537-545.	2.1	23
85	NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres. Journal of Controlled Release, 2005, 108, 271-281.	9.9	50
86	The influence of protein solubilisation, conformation and size on the burst release from poly(lactide-co-glycolide) microspheres. Journal of Controlled Release, 2005, 110, 34-48.	9.9	42
87	Interdomain Tilt Angle Determines Integrin-dependent Function of the Ninth and Tenth FIII Domains of Human Fibronectin. Journal of Biological Chemistry, 2004, 279, 55995-56003.	3.4	50
88	Controlled release of the fibronectin central cell binding domain from polymeric microspheres. Journal of Controlled Release, 2004, 95, 557-566.	9.9	27
89	Determining drug spatial distribution within controlled delivery tablets using MFX imaging. Journal of Controlled Release, 2004, 96, 97-100.	9.9	19
90	The intestinal zonula occludens toxin (ZOT) receptor recognises non-native ZOT conformers and localises to the intercellular contacts. FEBS Letters, 2003, 555, 638-642.	2.8	12

#	Article	IF	CITATIONS
91	Novel mutant human fibronectin FIII9–10 domain pair with increased conformational stability and biological activity. Protein Engineering, Design and Selection, 2002, 15, 1021-1024.	2.1	28
92	The Eighth FIII Domain of Human Fibronectin Promotes Integrin α5β1 Binding via Stabilization of the Ninth FIII Domain. Journal of Biological Chemistry, 2001, 276, 38885-38892.	3.4	66
93	Peptide substrates for AMP-activated protein kinase. Biochemical Society Transactions, 1995, 23, 141S-141S.	3.4	0