Hui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron, 2011, 70, 1115-1127.	8.1	162
2	A lymphatic defect causes ocular hypertension and glaucoma in mice. Journal of Clinical Investigation, 2014, 124, 4320-4324.	8.2	151
3	Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus. Journal of Neuroscience, 2013, 33, 12751-12763.	3.6	120
4	Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells That Depends on Cell Type and Location. , 2013, 54, 1106.		111
5	Neurons in the Most Superficial Lamina of the Mouse Superior Colliculus Are Highly Selective for Stimulus Direction. Journal of Neuroscience, 2015, 35, 7992-8003.	3.6	80
6	The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina. Neuron, 2010, 65, 503-515.	8.1	69
7	BARHL2 Differentially Regulates the Development of Retinal Amacrine and Ganglion Neurons. Journal of Neuroscience, 2009, 29, 3992-4003.	3.6	66
8	Progressive Degeneration of Retinal and Superior Collicular Functions in Mice With Sustained Ocular Hypertension. , 2015, 56, 1971.		65
9	Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in NLRP3 Knockout Mice. Scientific Reports, 2016, 6, 20998.	3.3	59
10	Long-Term Protection of Retinal Ganglion Cells and Visual Function by Brain-Derived Neurotrophic Factor in Mice With Ocular Hypertension. , 2016, 57, 3793.		43
11	Overexpression of Brain-Derived Neurotrophic Factor Protects Large Retinal Ganglion Cells After Optic Nerve Crush in Mice. ENeuro, 2017, 4, ENEURO.0331-16.2016.	1.9	41
12	Effects of Locomotion on Visual Responses in the Mouse Superior Colliculus. Journal of Neuroscience, 2019, 39, 9360-9368.	3.6	35
13	Missing Optomotor Head-Turning Reflex in the DBA/2J Mouse. , 2011, 52, 6766.		29
14	Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice. Journal of Neurophysiology, 2014, 112, 2092-2101.	1.8	29
15	Bidirectional encoding of motion contrast in the mouse superior colliculus. ELife, 2018, 7, .	6.0	27
16	Lack of Evidence for Stereotypical Direction Columns in the Mouse Superior Colliculus. Journal of Neuroscience, 2021, 41, 461-473.	3.6	25
17	Environmental Enrichment Rescues Binocular Matching of Orientation Preference in the Mouse Visual Cortex. Journal of Neuroscience, 2017, 37, 5822-5833.	3.6	24
18	Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice. Journal of Neurophysiology, 2014, 111, 2276-2286.	1.8	18

Ниі Снем

#	Article	IF	CITATIONS
19	Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse. Neuropharmacology, 2018, 139, 137-149.	4.1	18
20	A Laser-induced Mouse Model of Chronic Ocular Hypertension to Characterize Visual Defects. Journal of Visualized Experiments, 2013, , .	0.3	16
21	Subtype-dependent Morphological and Functional Degeneration of Retinal Ganglion Cells in Mouse Models of Experimental Glaucoma. Journal of Nature and Science, 2015, 1, e103.	1.1	11
22	Visual Deprivation Retards the Maturation of Dendritic Fields and Receptive Fields of Mouse Retinal Ganglion Cells. Frontiers in Cellular Neuroscience, 2021, 15, 640421.	3.7	4
23	Response properties of neurons in cat dorsal lateral suprasylvian cortex to optic flow fields. NeuroReport, 2004, 15, 1019-1023.	1.2	3
24	Pattern motion and component motion sensitivity in cat superior colliculus. NeuroReport, 2005, 16, 721-726.	1.2	3
25	Coarse-to-fine processing drives the efficient coding of natural scenes in mouse visual cortex. Cell Reports, 2022, 38, 110606.	6.4	3
26	Genetic landscape of FOXC2 mutations in lymphedema-distichiasis syndrome: Different mechanism of pathogenicity for mutations in different domains. Experimental Eye Research, 2022, 222, 109136.	2.6	2
27	Response properties of cat AMLS neurons to optic flow stimuli. Science in China Series C: Life Sciences, 2002, 45, 268.	1.3	1