Wenguang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142670/publications.pdf

Version: 2024-02-01

	471371	414303
1,133	17	32
citations	h-index	g-index
61	61	1355
docs citations	times ranked	citing authors
	citations 61	1,133 17 citations h-index 61 61

#	Article	IF	CITATIONS
1	Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 2020, 9, 971-989.	2.6	274
2	4D Printing: A Review on Recent Progresses. Micromachines, 2020, 11, 796.	1.4	115
3	Highâ€Throughput Fabrication and Modular Assembly of 3D Heterogeneous Microscale Tissues. Small, 2017, 13, 1602769.	5.2	63
4	Rapid Fabrication of Hydrogel Microstructures Using UV-Induced Projection Printing. Micromachines, 2015, 6, 1903-1913.	1.4	48
5	Recent advances of light-driven micro/nanomotors: toward powerful thrust and precise control. Nanotechnology Reviews, 2018, 7, 555-581.	2.6	36
6	Microfluidic-based cancer cell separation using active and passive mechanisms. Microfluidics and Nanofluidics, 2020, 24, $1.$	1.0	35
7	Recent advances in AFM-based biological characterization and applications at multiple levels. Soft Matter, 2020, 16, 8962-8984.	1.2	32
8	Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. Micromachines, 2021, 12, 96.	1.4	32
9	Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening. Lab on A Chip, 2017, 17, 4243-4252.	3.1	30
10	Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening. Materials and Design, 2019, 183, 108182.	3.3	29
11	Microsphere-Based Super-Resolution Imaging for Visualized Nanomanipulation. ACS Applied Materials & Interfaces, 2020, 12, 48093-48100.	4.0	28
12	Fabrication of flexible microlens arrays for parallel super-resolution imaging. Applied Surface Science, 2020, 504, 144375.	3.1	26
13	Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing. Nanotechnology Reviews, 2021, 10, 1046-1078.	2.6	24
14	Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels. Biomedical Microdevices, 2015, 17, 104.	1.4	23
15	Determination of Dielectric Properties of Cells using AC Electrokinetic-based Microfluidic Platform: A Review of Recent Advances. Micromachines, 2020, 11, 513.	1.4	23
16	Single-pixel camera with one graphene photodetector. Optics Express, 2016, 24, 400.	1.7	22
17	Regulation of breast cancer cell behaviours by the physical microenvironment constructed via projection microstereolithography. Biomaterials Science, 2016, 4, 863-870.	2.6	20
18	Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis. ACS Applied Materials & Interfaces, 2017, 9, 16715-16724.	4.0	18

#	Article	IF	CITATIONS
19	Microlenses arrays: Fabrication, materials, and applications. Microscopy Research and Technique, 2021, 84, 2784-2806.	1.2	18
20	Modular and Customized Fabrication of 3D Functional Microgels for Bottomâ€Up Tissue Engineering and Drug Screening. Advanced Materials Technologies, 2020, 5, 1900847.	3.0	17
21	Untethered microgripper-the dexterous hand at microscale. Biomedical Microdevices, 2019, 21, 82.	1.4	14
22	Recent advance in cell patterning techniques: Approaches, applications and future prospects. Sensors and Actuators A: Physical, 2022, 333, 113229.	2.0	14
23	Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres. Biomedical Microdevices, 2016, 18, 107.	1.4	13
24	Recent advances in microfluidic technologies for separation of biological cells. Biomedical Microdevices, 2020, 22, 55.	1.4	12
25	Dynamically directing cell organization <i>via</i> micro-hump structure patterned cell-adhered interfaces. Lab on A Chip, 2020, 20, 2447-2452.	3.1	12
26	Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules. Biofabrication, 2022, 14, 025023.	3.7	12
27	Nano-Manipulation Based on Real-Time Compressive Tracking. IEEE Nanotechnology Magazine, 2015, 14, 837-846.	1.1	11
28	Label-free multidimensional information acquisition from optogenetically engineered cells using a graphene transistor. Nanoscale, 2018, 10, 2285-2290.	2.8	11
29	Digital micro-mirror device -based light curing technology and its biological applications. Optics and Laser Technology, 2021, 143, 107344.	2.2	11
30	Visible light driven recyclable micromotors for "on-the-fly―water remediation. Materials Letters, 2020, 258, 126825.	1.3	10
31	A Review on Optoelectrokinetics-Based Manipulation and Fabrication of Micro/Nanomaterials. Micromachines, 2020, 11, 78.	1.4	10
32	Label-free characterization of different kinds of cells using optoelectrokinetic-based microfluidics. Optics Letters, 2020, 45, 2454.	1.7	8
33	Recent advances in acoustic microfluidics and its exemplary applications. Biomicrofluidics, 2022, 16, .	1.2	8
34	Dynamic fabrication of microfluidic systems for particles separation based on optical projection lithography. Biomedical Microdevices, 2020, 22, 80.	1.4	7
35	Influence of MoS2-metal interface on charge injection: a comparison between various metal contacts. Nanotechnology, 2020, 31, 395713.	1.3	7
36	Development of Multi-Dimensional Cell Co-Culture via a Novel Microfluidic Chip Fabricated by DMD-Based Optical Projection Lithography. IEEE Transactions on Nanobioscience, 2019, 18, 679-686.	2,2	6

3

#	Article	IF	CITATIONS
37	Engineered liver tissue <i>in vitro</i> to mimic liver functions and its biomedical applications. Materials Advances, 2022, 3, 4132-4154.	2.6	6
38	2D Normalized Iterative Hard Thresholding Algorithm for Fast Compressive Radar Imaging. Remote Sensing, 2017, 9, 619.	1.8	5
39	Imaging with Optogenetically Engineered Living Cells as a Photodetector. Advanced Biology, 2019, 3, 1800319.	3.0	5
40	Development of an image biosensor based on an optogenetically engineered cell for visual prostheses. Nanoscale, 2019, 11, 13213-13218.	2.8	5
41	Biomimetic construction of peritoneum to imitate peritoneal metastasis using digital micromirror device-based optical projection lithography. Lab on A Chip, 2020, 20, 3109-3119.	3.1	5
42	Atomic Force Microscopy for Tumor Research at Cell and Molecule Levels. Microscopy and Microanalysis, 2022, 28, 585-602.	0.2	5
43	Facile Method for Fabricating Microfluidic Chip Integrated with Microwell Arrays for Cell Trapping. Micromachines, 2019, 10, 719.	1.4	4
44	Micropatterned Cellâ€Repellent Interface Using Femtosecond Laser Direct Writing to Engineer Controlled Cell Organization. Advanced Materials Technologies, 2021, 6, 2100178.	3.0	3
45	Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. Micromachines, 2022, 13, 75.	1.4	3
46	Regulation of cell adhesion to poly(ethylene glycol) diacrylate film by modification with polystyrene nano-spheres. , $2016, \ldots$		2
47	Non-invasive acquisition of mechanical properties of cells via passive microfluidic mechanisms: A review. Biomicrofluidics, 2021, 15, 031501.	1.2	2
48	Optogenetically engineered cell-based graphene transistor for pharmacodynamic evaluation of anticancer drugs. Sensors and Actuators B: Chemical, 2022, 358, 131494.	4.0	2
49	Fabrication of microstructures using the DMD-based modulating projection printing method. , 2015, , .		1
50	Hydrogel Printing Based on UV-Induced Projection for Cell-Based Microarray Fabrication. Methods in Molecular Biology, 2018, 1771, 97-105.	0.4	1
51	Construction of Microenvironment Structures for the Study of Cell Behavior using DMD-based Optical Projection Lithography. , 2018, , .		1
52	Recent advances in optically induced di-electrophoresis and its biomedical applications. Biomedical Microdevices, 2022, 24, .	1.4	1
53	Tumor cellular behaviors regulated by controlled microenvionment. , 2015, , .		0
54	Controllable cancer cell growth using UV patterned hydrogels via DMD-based modulating projection printing. , 2015 , , .		0

#	Article	IF	CITATIONS
55	Patterned microwell arrays for single-cell analysis and drug screening. , 2017, , .		0
56	Non-UV Patterning of Gelatin Methacryloyl Hydrogel by Optically Induced Electropolymerization. , 2018, , .		0
57	Cellâ€Repellent Interfaces: Micropatterned Cellâ€Repellent Interface Using Femtosecond Laser Direct Writing to Engineer Controlled Cell Organization (Adv. Mater. Technol. 7/2021). Advanced Materials Technologies, 2021, 6, 2170038.	3.0	0
58	Customized construction of microscale multi-component biostructures for cellular applications. Materials Science and Engineering C, 2022, 133, 112599.	3.8	0
59	Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm. Micromachines, 2022, 13, 818.	1.4	0