Bo Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314263/publications.pdf

Version: 2024-02-01

		759233	839539	
18	373	12	18	
papers	citations	h-index	g-index	
21	21	21	EEC	
21	21	21	556	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Developmental Biology, 2022, 481, 148-159.	2.0	2
2	Slitâ€Robo signalling establishes a Sphingosineâ€1â€phosphate gradient to polarise fin mesenchyme. EMBO Reports, 2022, 23, .	4.5	4
3	Fibronectin and Integrin $\hat{l}\pm 5$ play overlapping and independent roles in regulating the development of pharyngeal endoderm and cartilage. Developmental Biology, 2022, 489, 122-133.	2.0	1
4	Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development (Cambridge), 2021 , 148 , .	2.5	10
5	Glypican 4 mediates Wnt transport between germ layers via signaling filopodia. Journal of Cell Biology, 2021, 220, .	5.2	14
6	Glypican 4 and Mmp14 interact in regulating the migration of anterior endodermal cells by limiting extracellular matrix deposition. Development (Cambridge), 2018, 145, .	2.5	20
7	Beluga whale pVHL enhances HIF-2α activity via inducing HIF-2α proteasomal degradation under hypoxia. Oncotarget, 2017, 8, 42272-42287.	1.8	18
8	ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nature Communications, 2016, 7, 11057.	12.8	31
9	Forkhead Transcription Factor 3a (FOXO3a) Modulates Hypoxia Signaling via Up-regulation of the von Hippel-Lindau Gene (VHL). Journal of Biological Chemistry, 2016, 291, 25692-25705.	3.4	27
10	Characterization of the hypoxia-inducible factor 1 alpha gene in the sperm whale, beluga whale, and Yangtze finless porpoise. Marine Biology, 2015, 162, 1201-1213.	1.5	13
11	FBXO32 Targets c-Myc for Proteasomal Degradation and Inhibits c-Myc Activity. Journal of Biological Chemistry, 2015, 290, 16202-16214.	3.4	61
12	Physicochemical Evolution and Molecular Adaptation of the Cetacean Osmoregulation-related Gene UT-A2 and Implications for Functional Studies. Scientific Reports, 2015, 5, 8795.	3.3	10
13	Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Development (Cambridge), 2015, 142, 2928-2940.	2.5	34
14	Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling. Blood Cancer Journal, 2014, 4, e198-e198.	6.2	22
15	Zebrafish eaf1 suppresses foxo3b expression to modulate transcriptional activity of gata1 and spi1 in primitive hematopoiesis. Developmental Biology, 2014, 388, 81-93.	2.0	14
16	Zebrafish mll Gene Is Essential for Hematopoiesis. Journal of Biological Chemistry, 2011, 286, 33345-33357.	3.4	16
17	Zebrafish foxo3b Negatively Regulates Canonical Wnt Signaling to Affect Early Embryogenesis. PLoS ONE, 2011, 6, e24469.	2.5	29
18	Zebrafish eaf1 and eaf2/u19 Mediate Effective Convergence and Extension Movements through the Maintenance of wnt11 and wnt5 Expression. Journal of Biological Chemistry, 2009, 284, 16679-16692.	3.4	45