Venkataramanan Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314259/publications.pdf Version: 2024-02-01

Venkataramanan

#	Article	IF	CITATIONS
1	Intracellular pathways for lignin catabolism in white-rot fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	82
2	Synthetic fungal multifunctional cellulases for enhanced biomass conversion. Green Chemistry, 2020, 22, 478-489.	9.0	31
3	Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. Biotechnology for Biofuels, 2020, 13, 186.	6.2	5
4	Ferredoxin5 Deletion Affects Metabolism of Algae during the Different Phases of Sulfur Deprivation. Plant Physiology, 2019, 181, 426-441.	4.8	3
5	Engineering enhanced cellobiohydrolase activity. Nature Communications, 2018, 9, 1186.	12.8	72
6	CHAPTER 9. The Role of Chlamydomonas Ferredoxins in Hydrogen Production and Other Related Metabolic Functions. Comprehensive Series in Photochemical and Photobiological Sciences, 2018, , 213-234.	0.3	1
7	Expression of a clostridial [FeFe]-hydrogenase in Chlamydomonas reinhardtii prolongs photo-production of hydrogen from water splitting. Algal Research, 2017, 22, 116-121.	4.6	28
8	A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei. Biotechnology for Biofuels, 2017, 10, 34.	6.2	37
9	Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae. , 2016, , 35-58.		Ο
10	Profiling <i>Chlamydomonas</i> Metabolism under Dark, Anoxic H ₂ -Producing Conditions Using a Combined Proteomic, Transcriptomic, and Metabolomic Approach. Journal of Proteome Research, 2014, 13, 5431-5451.	3.7	18
11	A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genetics and Biology, 2013, 55, 22-31.	2.1	22
12	A Mutant in the <i>ADH1</i> Gene of <i>Chlamydomonas reinhardtii</i> Elicits Metabolic Restructuring during Anaerobiosis Â. Plant Physiology, 2012, 158, 1293-1305.	4.8	60
13	Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17501-17506.	7.1	359
14	Altered Fermentative Metabolism in <i>Chlamydomonas reinhardtii</i> Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase. Plant Cell, 2012, 24, 692-707.	6.6	58
15	Metabolic Pathways in Green Algae with Potential Value for Biofuel Production. Cellular Origin and Life in Extreme Habitats, 2012, , 399-422.	0.3	5
16	Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5458-5463.	7.1	259
17	Improving biofuel production in phototrophic microorganisms with systems biology. Biofuels, 2011, 2, 125-144.	2.4	20
18	Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga <i>Chlamydomonas reinhardtii</i> . New Phytologist, 2011, 190, 279-288.	7.3	94

Venkataramanan

#	Article	IF	CITATIONS
19	P450 Redox Enzymes in the White Rot Fungus Phanerochaete chrysosporium: Gene Transcription, Heterologous Expression, and Activity Analysis on the Purified Proteins. Current Microbiology, 2010, 61, 306-314.	2.2	7
20	Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochemical and Biophysical Research Communications, 2010, 399, 492-497.	2.1	107
21	Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 2009, 75, 5570-5580.	3.1	59
22	Genome, transcriptome, and secretome analysis of wood decay fungus <i>Postia placenta</i> supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1954-1959.	7.1	530
23	Immunoproteomic Identification of Secretory and Subcellular Protein Antigens and Functional Evaluation of the Secretome Fraction of <i>Mycobacterium immunogenum</i> , a Newly Recognized Species of the <i>Mycobacterium chelonaeâ[^]Mycobacterium abscessus</i> Group. Journal of Proteome Research. 2009. 8. 2319-2330.	3.7	46
24	Regulation and heterologous expression of P450 enzyme system components of the white rot fungus Phanerochaete chrysosporium. Enzyme and Microbial Technology, 2008, 43, 205-213.	3.2	25
25	Physiological Regulation, Xenobiotic Induction, and Heterologous Expression of P450 Monooxygenase Gene pc-3 (CYP63A3), a New Member of the CYP63 Gene Cluster in the White-rot FungusPhanerochaete chrysosporium. Current Microbiology, 2005, 50, 292-298.	2.2	34