Lei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142288/publications.pdf

Version: 2024-02-01

567144 677027 1,064 22 15 22 h-index citations g-index papers 22 22 22 2102 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Light-Induced Currents at Domain Walls in Multiferroic BiFeO ₃ . Nano Letters, 2020, 20, 145-151.	4.5	36
2	Manipulating magnetoelectric energy landscape in multiferroics. Nature Communications, 2020, 11, 2836.	5.8	42
3	Quantifying Intrinsic, Extrinsic, Dielectric, and Secondary Pyroelectric Responses in PbZr _{1–<i>x</i>} Ti _{<i>x</i>} O ₃ Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 35146-35154.	4.0	16
4	Structural dynamics of LaVO3 on the nanosecond time scale. Structural Dynamics, 2019, 6, 014502.	0.9	3
5	New approach to waste-heat energy harvesting: pyroelectric energy conversion. NPG Asia Materials, 2019, 11, .	3.8	78
6	Scaling growth rates for perovskite oxide virtual substrates on silicon. Nature Communications, 2019, 10, 2464.	5.8	19
7	Enhanced pyroelectric properties of Bi1â^'xLaxFeO3 thin films. APL Materials, 2019, 7, .	2.2	11
8	Frontiers in the Growth of Complex Oxide Thin Films: Past, Present, and Future of Hybrid MBE. Advanced Functional Materials, 2018, 28, 1702772.	7.8	78
9	Continuously Tuning Epitaxial Strains by Thermal Mismatch. ACS Nano, 2018, 12, 1306-1312.	7.3	44
10	Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nature Communications, 2018, 9, 3764.	5.8	40
11	Pyroelectric and electrocaloric effects in ferroelectric silicon-doped hafnium oxide thin films. Physical Review Materials, 2018, 2, .	0.9	26
12	Opportunities in vanadium-based strongly correlated electron systems. MRS Communications, 2017, 7, 27-52.	0.8	77
13	Self-regulated growth of CaVO3 by hybrid molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	13
14	Improving the structural quality and electrical resistance of SrTiO3 thin films on Si (001) via a two-step anneal. Journal of Applied Physics, 2016, 119, .	1.1	14
15	Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	1.5	22
16	Imprinting of Local Metallic States into VO ₂ with Ultraviolet Light. Advanced Functional Materials, 2016, 26, 6612-6618.	7.8	43
17	Correlated metals as transparent conductors. Nature Materials, 2016, 15, 204-210.	13.3	291
18	Accessing a growth window for SrVO3 thin films. Applied Physics Letters, 2015, 107, .	1.5	48

#	Article	IF	CITATION
19	Wafer-scale growth of VO2 thin films using a combinatorial approach. Nature Communications, 2015, 6, 8475.	5.8	117
20	Growth of SrTiO ₃ on Si(001) by hybrid molecular beam epitaxy. Physica Status Solidi - Rapid Research Letters, 2014, 8, 917-923.	1.2	32
21	Criteria for improving the properties of ZnGeAs ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 906-917.	4.4	13
22	Experimental study of the kinetically-limited decomposition of ZnGeAs2 and its role in determining optimal conditions for thin film growth. Journal of Crystal Growth, 2012, 338, 267-271.	0.7	1