Stéphane Galland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142254/publications.pdf

Version: 2024-02-01

81 papers 1,006 citations

15 h-index 27 g-index

84 all docs 84 docs citations

84 times ranked 730 citing authors

#	Article	IF	CITATIONS
1	Potential of cellular signaling data for time-of-day estimation and spatial classification of travel demand: a large-scale comparative study with travel survey and land use data. Transportation Letters, 2022, 14, 787-805.	1.8	5
2	The quest of parsimonious XAI: A human-agent architecture for explanation formulation. Artificial Intelligence, 2022, 302, 103573.	3.9	17
3	Multilevel and holonic model for dynamic holarchy management: Application to large-scale road traffic. Engineering Applications of Artificial Intelligence, 2022, 109, 104622.	4.3	3
4	A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation, 2021, 48, 1671-1702.	2.1	24
5	One-to-Many Negotiation QoE Management Mechanism for End-User Satisfaction. IEEE Access, 2021, 9, 59231-59243.	2.6	4
6	Special issue on trends & amp; advances to mine intelligence from ambient data. Personal and Ubiquitous Computing, 2021, 25, 1-5.	1.9	0
7	Simulation of connected driving in hazardous weather conditions: General and extensible multiagent architecture and models. Engineering Applications of Artificial Intelligence, 2021, 104, 104412.	4.3	3
8	A five-step drone collaborative planning approach for the management of distributed spatial events and vehicle notification using multi-agent systems and firefly algorithms. Computer Networks, 2021, 198, 108282.	3.2	6
9	Run-time environment for the SARL agent-programming language: the example of the Janus platform. Future Generation Computer Systems, 2020, 107, 1105-1115.	4.9	9
10	Curvature-Based Geometric Approach for the Lateral Control of Autonomous Cars. Journal of the Franklin Institute, 2020, 357, 9378-9398.	1.9	4
11	Velocity Obstacle Based Strategy for Multi-agent Collision Avoidance of Unmanned Aerial Vehicles. , 2020, , .		7
12	Decision-Making under Time Pressure when Rescheduling Daily Activities. Procedia Computer Science, 2020, 170, 281-288.	1.2	1
13	Agent-Based Model of Cocoa Mirids at the Scale of a Cocoa Farm. Procedia Computer Science, 2020, 170, 1180-1185.	1.2	1
14	A critical review of the use of holonic paradigm in traffic and transportation systems. Engineering Applications of Artificial Intelligence, 2020, 90, 103503.	4.3	12
15	Obstacle Avoidance Model for UAVs with Joint Target based on Multi-Strategies and Follow-up Vector Field. Procedia Computer Science, 2020, 170, 257-264.	1.2	7
16	Explainable Agents as Static Web Pages: UAV Simulation Example. Lecture Notes in Computer Science, 2020, , 149-154.	1.0	2
17	Human-agent Explainability: An Experimental Case Study on the Filtering of Explanations. , 2020, , .		5
18	Modeling Process of a Third Dimension Universe for Transportation Simulation: Application to Railway System. IEEE Intelligent Transportation Systems Magazine, 2019, 11, 137-156.	2.6	2

#	Article	lF	CITATIONS
19	A Cyber-Physical System for Semi-Autonomous Oil&Gas Drilling Operations. , 2019, , .		7
20	Agent-based simulation of unmanned aerial vehicles in civilian applications: A systematic literature review and research directions. Future Generation Computer Systems, 2019, 100, 344-364.	4.9	47
21	Model transformations from the SARL agent-oriented programming language to an object-oriented programming language. International Journal of Agent Oriented Software Engineering, 2019, 7, 37.	0.1	1
22	Workshop on explainable AI in automated driving. , 2019, , .		4
23	Holonification model for a multilevel agent-based system. Personal and Ubiquitous Computing, 2019, 23, 633-651.	1.9	4
24	Explainable Multi-Agent Systems Through Blockchain Technology. Lecture Notes in Computer Science, 2019, , 41-58.	1.0	24
25	Model transformations from the SARL agent-oriented programming language to an object-oriented programming language. International Journal of Agent Oriented Software Engineering, 2019, 7, 37.	0.1	1
26	Agent-based Dynamic Rescheduling of Daily Activities. Procedia Computer Science, 2018, 130, 979-984.	1.2	5
27	Comparison of Agent-based Simulation Frameworks for Unmanned Aerial Transportation Applications. Procedia Computer Science, 2018, 130, 791-796.	1.2	28
28	A Brief Review of Holonic Multi-Agent Models for Traffic and Transportation Systems. Procedia Computer Science, 2018, 134, 137-144.	1.2	9
29	On the V2X speed synchronization at intersections: Rule based System for extended virtual platooning. Procedia Computer Science, 2018, 141, 255-262.	1.2	11
30	Holonification of Road Traffic Based on Graph Theory. Lecture Notes in Computer Science, 2018, , $513-525$.	1.0	4
31	AgentOil: A Multiagent-Based Simulation of the Drilling Process in Oilfields. Lecture Notes in Computer Science, 2018, , 339-343.	1.0	1
32	A new traffic route analyzer for commuter's guidance in developing countries: application study in Islamabad, Pakistan. Journal of Ambient Intelligence and Humanized Computing, 2017, 8, 395-404.	3.3	1
33	Towards an Multilevel Agent-based Model for Traffic Simulation. Procedia Computer Science, 2017, 109, 887-892.	1,2	25
34	Towards Agent Based Modeling for Mobility Behavior Shift. Procedia Computer Science, 2017, 109, 949-954.	1,2	1
35	Helping the Performance Evaluation of an Agent Run-time Framework: the SARL Experience Index. Procedia Computer Science, 2017, 110, 159-166.	1.2	0
36	Demand for Agent-Based Transportation Models & Demand For Agent For Age	1.2	3

#	Article	IF	Citations
37	First Comparison of SARL to Other Agent-Programming Languages and Frameworks. Procedia Computer Science, 2017, 109, 1080-1085.	1.2	13
38	Addressing the Challenges of Conservative Event Synchronization for the SARL Agent-Programming Language. Lecture Notes in Computer Science, 2017, , 31-42.	1.0	4
39	Towards an Agent-based Model for Demand-Responsive Transport Serving Thin Flows. Procedia Computer Science, 2016, 83, 952-957.	1.2	4
40	Lateral Control of an Unmaned Car Using GNSS Positionning in the Context of Connected Vehicles. Procedia Computer Science, 2016, 98, 148-155.	1.2	5
41	Organizational-based model and agent-based simulation for long-term carpooling. Future Generation Computer Systems, 2016, 64, 125-139.	4.9	14
42	Towards the Dynamic Evaluation of a Public Bus Network for Small Size Urban Environments. Procedia Computer Science, 2015, 56, 168-176.	1.2	2
43	A New Perspective on Multi-Agent Environment with SARL. Procedia Computer Science, 2015, 56, 526-531.	1.2	8
44	Agent-based Simulation Model for Long-term Carpooling: Effect of Activity Planning Constraints. Procedia Computer Science, 2015, 52, 412-419.	1.2	14
45	Agent Bodies: An Interface Between Agent and Environment. Lecture Notes in Computer Science, 2015, , 25-40.	1.0	6
46	Agent Environments for Multi-agent Systems – A Research Roadmap. Lecture Notes in Computer Science, 2015, , 3-21.	1.0	12
47	Using Semantics in the Environment for Multiagent-Based Simulation. , 2015, , 1273-1281.		0
48	Organizational and Holonic Modelling of a Simulated and Synthetic Spatial Environment. Lecture Notes in Computer Science, 2015, , 147-169.	1.0	3
49	Organizational and Agent-based Automated Negotiation Model for Carpooling. Procedia Computer Science, 2014, 37, 396-403.	1.2	7
50	SARL: A General-Purpose Agent-Oriented Programming Language. , 2014, , .		64
51	Multi-agent simulation of individual mobility behavior in carpooling. Transportation Research Part C: Emerging Technologies, 2014, 45, 83-98.	3.9	80
52	An ontology-based metamodel for multiagent-based simulations. Simulation Modelling Practice and Theory, 2014, 40, 64-85.	2.2	26
53	Agent-based Simulation of Drivers with the Janus Platform. Procedia Computer Science, 2014, 32, 738-743.	1.2	5
54	Multilevel Model of the 3D Virtual Environment for Crowd Simulation in Buildings. Procedia Computer Science, 2014, 32, 822-827.	1.2	6

#	Article	IF	CITATIONS
55	The ASPECS Process., 2014,, 65-114.		7
56	Simulation Model of Carpooling with the Janus Multiagent Platform. Procedia Computer Science, 2013, 19, 860-866.	1.2	15
57	Real-time Collision Avoidance for Pedestrian and Bicyclist Simulation: A Smooth and Predictive Approach. Procedia Computer Science, 2013, 19, 815-820.	1.2	11
58	lpseity – A Laboratory for Synthesizing and Validating Artificial Cognitive Systems in Multi-agent Systems. Lecture Notes in Computer Science, 2013, , 641-644.	1.0	0
59	Virtual intelligent vehicle urban simulator: Application to vehicle platoon evaluation. Simulation Modelling Practice and Theory, 2012, 24, 103-114.	2.2	30
60	Holonic Multi-Agent Systems. Natural Computing Series, 2011, , 251-279.	2.2	10
61	Towards the agentification of a virtual situated environment for urban crowd simulation. , 2011, , .		0
62	MetroB: Evaluation and simulation of public transport system. , 2011, , .		5
63	Semantic Management of Intelligent Multi-Agents Systems in a 3D Environment. Studies in Computational Intelligence, 2011, , 309-314.	0.7	3
64	SEMANTIC MANAGEMENT OF INTELLIGENT MULTI-AGENTS SYSTEMS IN A 3D ENVIRONMENT. , 2011, , .		0
65	ASPECS: an agent-oriented software process for engineering complex systems. Autonomous Agents and Multi-Agent Systems, 2010, 20, 260-304.	1.3	135
66	THE METAMODEL: A STARTING POINT FOR DESIGN PROCESSES CONSTRUCTION. International Journal of Software Engineering and Knowledge Engineering, 2010, 20, 575-608.	0.6	24
67	An approach based upon OWL-S for method fragments documentation and selection. , 2010, , .		0
68	An organisational approach to engineer emergence within holarchies. International Journal of Agent Oriented Software Engineering, 2010, 4, 304.	0.1	7
69	Submicroscopic and Physics Simulation of Autonomous and Intelligent Vehicles in Virtual Reality. , 2010, , .		17
70	Agent-Oriented Software Engineering IX. Lecture Notes in Computer Science, 2009, , .	1.0	3
71	An Organisational Platform for Holonic and Multiagent Systems. Lecture Notes in Computer Science, 2009, , 104-119.	1.0	33
72	Combining JADE and Repast for the Complex Simulation of Enterprise Value-Adding Networks. Lecture Notes in Computer Science, 2009, , 243-256.	1.0	6

#	Article	IF	CITATIONS
73	A MAS Metamodel-Driven Approach to Process Fragments Selection. Lecture Notes in Computer Science, 2009, , 86-100.	1.0	3
74	Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory, 2008, 16, 1659-1676.	2.2	46
75	Towards a Multilevel Simulation Approach Based on Holonic Multiagent Systems. , 2008, , .		10
76	How to Control Emergence of Behaviours in a Holarchy., 2008,,.		3
77	A Holonic Metamodel for Agent-Oriented Analysis and Design. Lecture Notes in Computer Science, 2007, , 237-246.	1.0	21
78	Towards a Multi-Agent Model of the Decisional Subsystem of Distributed Industrial Systems: an Organizational and Formal Approach. , 2006, , .		1
79	An Analysis and Design Concept for Self-organization in Holonic Multi-agent Systems. , 2006, , 15-27.		29
80	Simulation of Distributed Industrial Systems. , 2005, , 277-287.		1
81	A-: An introduction to a methodological approach for the simulation of distributed industrial systems. International Journal of Production Economics, 2003, 85, 11-31.	5.1	20