Stéphane Galland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ASPECS: an agent-oriented software process for engineering complex systems. Autonomous Agents and Multi-Agent Systems, 2010, 20, 260-304.	1.3	135
2	Multi-agent simulation of individual mobility behavior in carpooling. Transportation Research Part C: Emerging Technologies, 2014, 45, 83-98.	3.9	80
3	SARL: A General-Purpose Agent-Oriented Programming Language. , 2014, , .		64
4	Agent-based simulation of unmanned aerial vehicles in civilian applications: A systematic literature review and research directions. Future Generation Computer Systems, 2019, 100, 344-364.	4.9	47
5	Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory, 2008, 16, 1659-1676.	2.2	46
6	An Organisational Platform for Holonic and Multiagent Systems. Lecture Notes in Computer Science, 2009, , 104-119.	1.0	33
7	Virtual intelligent vehicle urban simulator: Application to vehicle platoon evaluation. Simulation Modelling Practice and Theory, 2012, 24, 103-114.	2.2	30
8	An Analysis and Design Concept for Self-organization in Holonic Multi-agent Systems. , 2006, , 15-27.		29
9	Comparison of Agent-based Simulation Frameworks for Unmanned Aerial Transportation Applications. Procedia Computer Science, 2018, 130, 791-796.	1.2	28
10	An ontology-based metamodel for multiagent-based simulations. Simulation Modelling Practice and Theory, 2014, 40, 64-85.	2.2	26
11	Towards an Multilevel Agent-based Model for Traffic Simulation. Procedia Computer Science, 2017, 109, 887-892.	1.2	25
12	THE METAMODEL: A STARTING POINT FOR DESIGN PROCESSES CONSTRUCTION. International Journal of Software Engineering and Knowledge Engineering, 2010, 20, 575-608.	0.6	24
13	A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France). Transportation, 2021, 48, 1671-1702.	2.1	24
14	Explainable Multi-Agent Systems Through Blockchain Technology. Lecture Notes in Computer Science, 2019, , 41-58.	1.0	24
15	A Holonic Metamodel for Agent-Oriented Analysis and Design. Lecture Notes in Computer Science, 2007, , 237-246.	1.0	21
16	A-: An introduction to a methodological approach for the simulation of distributed industrial systems. International Journal of Production Economics, 2003, 85, 11-31.	5.1	20
17	Submicroscopic and Physics Simulation of Autonomous and Intelligent Vehicles in Virtual Reality. , 2010, , .		17
18	The quest of parsimonious XAI: A human-agent architecture for explanation formulation. Artificial Intelligence, 2022, 302, 103573.	3.9	17

STéPHANE GALLAND

#	Article	IF	CITATIONS
19	Simulation Model of Carpooling with the Janus Multiagent Platform. Procedia Computer Science, 2013, 19, 860-866.	1.2	15
20	Agent-based Simulation Model for Long-term Carpooling: Effect of Activity Planning Constraints. Procedia Computer Science, 2015, 52, 412-419.	1.2	14
21	Organizational-based model and agent-based simulation for long-term carpooling. Future Generation Computer Systems, 2016, 64, 125-139.	4.9	14
22	First Comparison of SARL to Other Agent-Programming Languages and Frameworks. Procedia Computer Science, 2017, 109, 1080-1085.	1.2	13
23	A critical review of the use of holonic paradigm in traffic and transportation systems. Engineering Applications of Artificial Intelligence, 2020, 90, 103503.	4.3	12
24	Agent Environments for Multi-agent Systems – A Research Roadmap. Lecture Notes in Computer Science, 2015, , 3-21.	1.0	12
25	Real-time Collision Avoidance for Pedestrian and Bicyclist Simulation: A Smooth and Predictive Approach. Procedia Computer Science, 2013, 19, 815-820.	1.2	11
26	On the V2X speed synchronization at intersections: Rule based System for extended virtual platooning. Procedia Computer Science, 2018, 141, 255-262.	1.2	11
27	Towards a Multilevel Simulation Approach Based on Holonic Multiagent Systems. , 2008, , .		10
28	Holonic Multi-Agent Systems. Natural Computing Series, 2011, , 251-279.	2.2	10
29	A Brief Review of Holonic Multi-Agent Models for Traffic and Transportation Systems. Procedia Computer Science, 2018, 134, 137-144.	1.2	9
30	Run-time environment for the SARL agent-programming language: the example of the Janus platform. Future Generation Computer Systems, 2020, 107, 1105-1115.	4.9	9
31	A New Perspective on Multi-Agent Environment with SARL. Procedia Computer Science, 2015, 56, 526-531.	1.2	8
32	An organisational approach to engineer emergence within holarchies. International Journal of Agent Oriented Software Engineering, 2010, 4, 304.	0.1	7
33	Organizational and Agent-based Automated Negotiation Model for Carpooling. Procedia Computer Science, 2014, 37, 396-403.	1.2	7
34	A Cyber-Physical System for Semi-Autonomous Oil&Gas Drilling Operations. , 2019, , .		7
35	Velocity Obstacle Based Strategy for Multi-agent Collision Avoidance of Unmanned Aerial Vehicles. , 2020, , .		7
36	Obstacle Avoidance Model for UAVs with Joint Target based on Multi-Strategies and Follow-up Vector Field. Procedia Computer Science, 2020, 170, 257-264.	1.2	7

#	Article	IF	CITATIONS
37	The ASPECS Process. , 2014, , 65-114.		7
38	Multilevel Model of the 3D Virtual Environment for Crowd Simulation in Buildings. Procedia Computer Science, 2014, 32, 822-827.	1.2	6
39	Agent Bodies: An Interface Between Agent and Environment. Lecture Notes in Computer Science, 2015, , 25-40.	1.0	6
40	A five-step drone collaborative planning approach for the management of distributed spatial events and vehicle notification using multi-agent systems and firefly algorithms. Computer Networks, 2021, 198, 108282.	3.2	6
41	Combining JADE and Repast for the Complex Simulation of Enterprise Value-Adding Networks. Lecture Notes in Computer Science, 2009, , 243-256.	1.0	6
42	MetroB: Evaluation and simulation of public transport system. , 2011, , .		5
43	Agent-based Simulation of Drivers with the Janus Platform. Procedia Computer Science, 2014, 32, 738-743.	1.2	5
44	Lateral Control of an Unmaned Car Using GNSS Positionning in the Context of Connected Vehicles. Procedia Computer Science, 2016, 98, 148-155.	1.2	5
45	Agent-based Dynamic Rescheduling of Daily Activities. Procedia Computer Science, 2018, 130, 979-984.	1.2	5
46	Potential of cellular signaling data for time-of-day estimation and spatial classification of travel demand: a large-scale comparative study with travel survey and land use data. Transportation Letters, 2022, 14, 787-805.	1.8	5
47	Human-agent Explainability: An Experimental Case Study on the Filtering of Explanations. , 2020, , .		5
48	Towards an Agent-based Model for Demand-Responsive Transport Serving Thin Flows. Procedia Computer Science, 2016, 83, 952-957.	1.2	4
49	Holonification of Road Traffic Based on Graph Theory. Lecture Notes in Computer Science, 2018, , 513-525.	1.0	4
50	Workshop on explainable AI in automated driving. , 2019, , .		4
51	Holonification model for a multilevel agent-based system. Personal and Ubiquitous Computing, 2019, 23, 633-651.	1.9	4
52	Curvature-Based Geometric Approach for the Lateral Control of Autonomous Cars. Journal of the Franklin Institute, 2020, 357, 9378-9398.	1.9	4
53	One-to-Many Negotiation QoE Management Mechanism for End-User Satisfaction. IEEE Access, 2021, 9, 59231-59243.	2.6	4
54	Addressing the Challenges of Conservative Event Synchronization for the SARL Agent-Programming Language. Lecture Notes in Computer Science, 2017, , 31-42.	1.0	4

STéPHANE GALLAND

#	Article	IF	CITATIONS
55	How to Control Emergence of Behaviours in a Holarchy. , 2008, , .		3
56	Agent-Oriented Software Engineering IX. Lecture Notes in Computer Science, 2009, , .	1.0	3
57	Demand for Agent-Based Transportation Models & Social Behavioral Challenges. Procedia Computer Science, 2017, 113, 210-216.	1.2	3
58	Simulation of connected driving in hazardous weather conditions: General and extensible multiagent architecture and models. Engineering Applications of Artificial Intelligence, 2021, 104, 104412.	4.3	3
59	Semantic Management of Intelligent Multi-Agents Systems in a 3D Environment. Studies in Computational Intelligence, 2011, , 309-314.	0.7	3
60	A MAS Metamodel-Driven Approach to Process Fragments Selection. Lecture Notes in Computer Science, 2009, , 86-100.	1.0	3
61	Organizational and Holonic Modelling of a Simulated and Synthetic Spatial Environment. Lecture Notes in Computer Science, 2015, , 147-169.	1.0	3
62	Multilevel and holonic model for dynamic holarchy management: Application to large-scale road traffic. Engineering Applications of Artificial Intelligence, 2022, 109, 104622.	4.3	3
63	Towards the Dynamic Evaluation of a Public Bus Network for Small Size Urban Environments. Procedia Computer Science, 2015, 56, 168-176.	1.2	2
64	Modeling Process of a Third Dimension Universe for Transportation Simulation: Application to Railway System. IEEE Intelligent Transportation Systems Magazine, 2019, 11, 137-156.	2.6	2
65	Explainable Agents as Static Web Pages: UAV Simulation Example. Lecture Notes in Computer Science, 2020, , 149-154.	1.0	2
66	Simulation of Distributed Industrial Systems. , 2005, , 277-287.		1
67	Towards a Multi-Agent Model of the Decisional Subsystem of Distributed Industrial Systems: an Organizational and Formal Approach. , 2006, , .		1
68	A new traffic route analyzer for commuter's guidance in developing countries: application study in Islamabad, Pakistan. Journal of Ambient Intelligence and Humanized Computing, 2017, 8, 395-404.	3.3	1
69	Towards Agent Based Modeling for Mobility Behavior Shift. Procedia Computer Science, 2017, 109, 949-954.	1.2	1
70	Model transformations from the SARL agent-oriented programming language to an object-oriented programming language. International Journal of Agent Oriented Software Engineering, 2019, 7, 37.	0.1	1
71	Decision-Making under Time Pressure when Rescheduling Daily Activities. Procedia Computer Science, 2020, 170, 281-288.	1.2	1
72	Agent-Based Model of Cocoa Mirids at the Scale of a Cocoa Farm. Procedia Computer Science, 2020, 170, 1180-1185.	1.2	1

#	Article	IF	CITATIONS
73	AgentOil: A Multiagent-Based Simulation of the Drilling Process in Oilfields. Lecture Notes in Computer Science, 2018, , 339-343.	1.0	1
74	Model transformations from the SARL agent-oriented programming language to an object-oriented programming language. International Journal of Agent Oriented Software Engineering, 2019, 7, 37.	0.1	1
75	An approach based upon OWL-S for method fragments documentation and selection. , 2010, , .		0
76	Towards the agentification of a virtual situated environment for urban crowd simulation. , 2011, , .		0
77	Helping the Performance Evaluation of an Agent Run-time Framework: the SARL Experience Index. Procedia Computer Science, 2017, 110, 159-166.	1.2	0
78	Special issue on trends & advances to mine intelligence from ambient data. Personal and Ubiquitous Computing, 2021, 25, 1-5.	1.9	0
79	SEMANTIC MANAGEMENT OF INTELLIGENT MULTI-AGENTS SYSTEMS IN A 3D ENVIRONMENT. , 2011, , .		0
80	lpseity – A Laboratory for Synthesizing and Validating Artificial Cognitive Systems in Multi-agent Systems. Lecture Notes in Computer Science, 2013, , 641-644.	1.0	0
81	Using Semantics in the Environment for Multiagent-Based Simulation. , 2015, , 1273-1281.		0