Clara R Correia

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3142180/clara-r-correia-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38 17 31 993 h-index g-index citations papers 8.1 1,236 43 4.55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
38	Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. <i>Npj Regenerative Medicine</i> , 2021 , 6, 80	15.8	3
37	Oxygen releasing materials: Towards addressing the hypoxia-related issues in tissue engineering. <i>Materials Science and Engineering C</i> , 2021 , 122, 111896	8.3	15
36	Minimalist Tissue Engineering Approaches Using Low Material-Based Bioengineered Systems. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2002110	10.1	6
35	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. <i>Tissue Engineering - Part B: Reviews</i> , 2021 ,	7.9	1
34	One-Step All-Aqueous Interfacial Assembly of Robust Membranes for Long-Term Encapsulation and Culture of Adherent Stem/Stromal Cells. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100266	10.1	3
33	3D-Bioprinted Constructs that Breathe. <i>Matter</i> , 2021 , 4, 15-17	12.7	2
32	An Immunomodulatory Miniaturized 3D Screening Platform Using Liquefied Capsules. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001993	10.1	2
31	Fabrication of Artificial Nanobasement Membranes for Cell Compartmentalization in 3D Tissues. <i>Small</i> , 2020 , 16, e1907434	11	9
30	Cell Behavior within Nanogrooved Sandwich Culture Systems. <i>Small</i> , 2020 , 16, e2001975	11	4
29	Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to Multifunctional Devices. <i>Advanced Functional Materials</i> , 2020 , 30, 1908061	15.6	16
28	Geometrically Controlled Liquefied Capsules for Modular Tissue Engineering Strategies. <i>Advanced Biology</i> , 2020 , 4, e2000127	3.5	5
27	In Situ Cross-Linking of Artificial Basement Membranes in 3D Tissues and Their Size-Dependent Molecular Permeability. <i>Biomacromolecules</i> , 2020 , 21, 4923-4932	6.9	1
26	Oxidized Cashew Gum Scaffolds for Tissue Engineering. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1800574	3.9	17
25	Cell encapsulation in liquified compartments: Protocol optimization and challenges. <i>PLoS ONE</i> , 2019 , 14, e0218045	3.7	10
24	Physical immobilization of particles inspired by pollination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5405-5410	11.5	3
23	Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. <i>Nanoscale</i> , 2019 , 11, 16214-16221	7.7	10
22	Liquefied Microcapsules as Dual-Microcarriers for 3D+3D Bottom-Up Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1901221	10.1	13

(2013-2019)

21	Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units. <i>Biofabrication</i> , 2019 , 12, 015005	10.5	17
20	Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701444	10.1	12
19	The influence of surface modified poly(l-lactic acid) films on the differentiation of human monocytes into macrophages. <i>Biomaterials Science</i> , 2017 , 5, 551-560	7.4	18
18	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. <i>Acta Biomaterialia</i> , 2017 , 53, 483-494	10.8	20
17	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. <i>Scientific Reports</i> , 2016 , 6, 21883	4.9	48
16	A Closed Chondromimetic Environment within Magnetic-Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGF-B Microparticles. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1346-55	10.1	24
15	Nanostructured Capsules for Cartilage Tissue Engineering. <i>Methods in Molecular Biology</i> , 2015 , 1340, 181-9	1.4	4
14	Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration. <i>Advances in Experimental Medicine and Biology</i> , 2015 , 881, 143-60	3.6	15
13	Liquid marbles for high-throughput biological screening of anchorage-dependent cells. <i>Advanced Healthcare Materials</i> , 2015 , 4, 264-70	10.1	32
12	Compartmentalized bioencapsulated liquefied 3D macro-construct by perfusion-based layer-by-layer technique. <i>RSC Advances</i> , 2015 , 5, 2511-2516	3.7	11
11	A novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening. <i>Biomaterials Science</i> , 2015 , 3, 581-5	7.4	58
10	Magnetically labeled cells with surface-modified fe3 o4 spherical and rod-shaped magnetic nanoparticles for tissue engineering applications. <i>Advanced Healthcare Materials</i> , 2015 , 4, 883-91	10.1	29
9	Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. <i>ACS Applied Materials & District Materials & </i>	9.5	84
8	Sequential ionic and thermogelation of chitosan spherical hydrogels prepared using superhydrophobic surfaces to immobilize cells and drugs. <i>Journal of Bioactive and Compatible Polymers</i> , 2014 , 29, 50-65	2	17
7	Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. <i>Small</i> , 2014 , 10, 2459-69	11	131
6	Biomimetic Miniaturized Platform Able to Sustain Arrays of Liquid Droplets for High-Throughput Combinatorial Tests. <i>Advanced Functional Materials</i> , 2014 , 24, 5096-5103	15.6	50
5	Liquified chitosan Elginate multilayer capsules incorporating poly(L-lactic acid) microparticles as cell carriers. <i>Soft Matter</i> , 2013 , 9, 2125-2130	3.6	48
4	Adhesive nanostructured multilayer films using a bacterial exopolysaccharide for biomedical applications. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2367-2374	7.3	63

3	Multilayered hierarchical capsules providing cell adhesion sites. <i>Biomacromolecules</i> , 2013 , 14, 743-51	6.9	65
2	Correction to Multilayered Hierarchical Capsules Providing Cell Adhesion Sites Biomacromolecules, 2013 , 14, 1250-1250	6.9	2
1	Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. <i>Tissue Engineering - Part C: Methods</i> , 2011 , 17, 717-30	2.9	125