
Antonio Encina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant Journal, 2010, 64, 633-644.	2.8	245
2	The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Molecular Biology, 2009, 70, 283-296.	2.0	153
3	Altered Lignin Biosynthesis Improves Cellulosic Bioethanol Production in Transgenic Maize Plants Down-Regulated for Cinnamyl Alcohol Dehydrogenase. Molecular Plant, 2012, 5, 817-830.	3.9	112
4	The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signaling and Behavior, 2011, 6, 1104-1110.	1.2	90
5	Ectopic lignification in primary celluloseâ€deficient cell walls of maize cell suspension cultures. Journal of Integrative Plant Biology, 2015, 57, 357-372.	4.1	69

 $_{6}$ FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

7	Histological aspects of three Pistacia terebinthus galls induced by three different aphids: Paracletus cimiciformis, Forda marginata and Forda formicaria. Plant Science, 2009, 176, 303-314.	1.7	60
8	ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana*. Journal of Experimental Botany, 2008, 59, 875-889.	2.4	57
9	Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor. Planta, 2005, 223, 77-89.	1.6	56
10	Cell wall modifications of bean (Phaseolus vulgaris) cell suspensions during habituation and dehabituation to dichlobenil. Physiologia Plantarum, 2002, 114, 182-191.	2.6	50
11	Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize. Plant Science, 2015, 236, 272-282.	1.7	44
12	Novel typeÂll cell wall architecture in dichlobenil-habituated maize calluses. Planta, 2009, 229, 617-631.	1.6	34
13	Characterization of cell walls in bean (Phaseolus vulgaris L.) callus cultures tolerant to dichlobenil. Plant Science, 2001, 160, 331-339.	1.7	33
14	Changes In Cell Wall Polymers And Degradability In Maize Mutants Lacking 3'- And 5'- <i>O</i> -Methyltransferases Involved In Lignin Biosynthesis. Plant and Cell Physiology, 2017, 58, pcw198.	1.5	32
15	Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock. Carbohydrate Polymers, 2017, 175, 679-688.	5.1	28
16	Cell wall modifications in bean (Phaseolus vulgaris) callus cultures tolerant to isoxaben. Physiologia Plantarum, 1999, 107, 54-59.	2.6	27
17	Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil. Physiologia Plantarum, 2006, 127, 87-99.	2.6	25
18	Unraveling the Biochemical and Molecular Networks Involved in Maize Cell Habituation to the Cellulose Biosynthesis Inhibitor Dichlobenil. Molecular Plant, 2010, 3, 842-853.	3.9	24

ΑΝΤΟΝΙΟ ΕΝCINA

#	Article	IF	CITATIONS
19	Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. Plant Science, 2021, 307, 110882.	1.7	21
20	High peroxidase activity and stable changes in the cell wall are related to dichlobenil tolerance. Journal of Plant Physiology, 2009, 166, 1229-1240.	1.6	20
21	Cellulose Biosynthesis Inhibitors: Comparative Effect on Bean Cell Cultures. International Journal of Molecular Sciences, 2012, 13, 3685-3702.	1.8	20
22	Effects of various densities ofOphiostoma ipsinoculations onPinus sylvestrisin north-western Spain. Forest Pathology, 2004, 34, 213-223.	0.5	19
23	The phenolic profile of maize primary cell wall changes in cellulose-deficient cell cultures. Phytochemistry, 2010, 71, 1684-1689.	1.4	17
24	Pistacia terebinthus L. leaflets: an anatomical study. Plant Systematics and Evolution, 2008, 272, 107-118.	0.3	13
25	Changes in Cinnamic Acid Derivatives Associated with the Habituation of Maize Cells to Dichlobenil. Molecular Plant, 2011, 4, 869-878.	3.9	13
26	Plasticity of Xyloglucan Composition in Bean (Phaseolus vulgaris)-Cultured Cells during Habituation and Dehabituation to Lethal Concentrations of Dichlobenil. Molecular Plant, 2010, 3, 603-609.	3.9	10
27	The biosynthesis and wallâ€binding of hemicelluloses in celluloseâ€deficient maize cells: An example of metabolic plasticity. Journal of Integrative Plant Biology, 2015, 57, 373-387.	4.1	10
28	Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling. Physiologia Plantarum, 2018, 164, 45-55.	2.6	10
29	Tomato Graft Union Failure Is Associated with Alterations in Tissue Development and the Onset of Cell Wall Defense Responses. Agronomy, 2021, 11, 1197.	1.3	10
30	Deepening into the proteome of maize cells habituated to the cellulose biosynthesis inhibitor dichlobenil. Plant Signaling and Behavior, 2011, 6, 143-146.	1.2	9
31	Habituation of Bean (Phaseolus vulgaris) Cell Cultures to Quinclorac and Analysis of the Subsequent Cell Wall Modifications. Annals of Botany, 2008, 101, 1329-1339.	1.4	8
32	Effect of water availability and fertilization on water status, growth, vigour and the resistance of Scots pine to fungal mass inoculation withOphiostoma ips. Plant Biosystems, 2012, 146, 384-393.	0.8	8
33	Immune Priming Triggers Cell Wall Remodeling and Increased Resistance to Halo Blight Disease in Common Bean. Plants, 2021, 10, 1514.	1.6	8
34	The graft framework: Quantitative changes in cell wall matrix polysaccharides throughout the tomato graft union formation. Carbohydrate Polymers, 2022, 276, 118781.	5.1	8
35	Histological Changes Associated with the Graft Union Development in Tomato. Plants, 2020, 9, 1479.	1.6	7
36	Increase in XET activity in bean (Phaseolus vulgaris L.) cells habituated to dichlobenil. Planta, 2007, 226, 765-771.	1.6	6

ΑΝΤΟΝΙΟ ΕΝCINA

#	Article	IF	CITATIONS
37	ZmMYB31 & ZmMYB42: two maize R2R3-MYB transcription factors having complementary roles in the lignin and phenylpropanoid metabolism regulation. New Biotechnology, 2009, 25, S279-S280.	2.4	6
38	Overexpression of ZePrx in Nicotiana tabacum Affects Lignin Biosynthesis Without Altering Redox Homeostasis. Frontiers in Plant Science, 2020, 11, 900.	1.7	6
39	Early habituation of maize (<i>Zea mays</i>) suspensionâ€cultured cells to 2,6â€dichlorobenzonitrile is associated with the enhancement of antioxidant status. Physiologia Plantarum, 2016, 157, 193-204.	2.6	5
40	Chemical Changes during Maize Tissue Aging and Its Relationship with Mediterranean Corn Borer Resistance. Journal of Agricultural and Food Chemistry, 2017, 65, 9180-9185.	2.4	5
41	Autolysis-like release of homogalacturonan from bean (Phaseolus vulgaris L.) callus cell walls. Plant Science, 2003, 164, 579-588.	1.7	4
42	Quinclorac-habituation of bean (Phaseolus vulgaris) cultured cells is related to an increase in their antioxidant capacity. Plant Physiology and Biochemistry, 2016, 107, 257-263.	2.8	4
43	Habituation and dehabituation to dichlobenil. Plant Signaling and Behavior, 2009, 4, 1069-1071.	1.2	3
44	Phenolic metabolism and molecular mass distribution of polysaccharides in celluloseâ€deficient maize cells. Journal of Integrative Plant Biology, 2017, 59, 475-495.	4.1	3
45	The role of cell wall phenolics during the early remodelling of cellulose-deficient maize cells. Phytochemistry, 2020, 170, 112219.	1.4	3
46	Production of Encecalin in Cell Cultures and Hairy Roots of Helianthella quinquenervis (Hook.) A. Gray. Molecules, 2020, 25, 3231.	1.7	3
47	Purification and characterization of a soluble β-1,4-glucan from bean (PhaseolusÂvulgaris L.)-cultured cells dehabituated to dichlobenil. Planta, 2013, 237, 1475-1482.	1.6	2
48	Elucidating the multifunctional role of the cell wall components in the maize exploitation. BMC Plant Biology, 2021, 21, 251.	1.6	2
49	Effect of ancymidol on cell wall metabolism in growing maize cells. Planta, 2018, 247, 987-999.	1.6	1
50	Histological description of <i>Saxifraga paniculata</i> leaves with special focus on structures that release CaCO ₃ . Plant Biosystems, 2022, 156, 497-505.	0.8	1