Xuechang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nature Communications, 2022, 13, 358.	5.8	160
2	Ultra‣tretchable and Fast Selfâ€Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber. Advanced Materials, 2022, 34, e2105416.	11.1	110
3	Body Temperature Enhanced Adhesive, Antibacterial, and Recyclable Ionic Hydrogel for Epidermal Electrophysiological Monitoring. Advanced Healthcare Materials, 2022, 11, .	3.9	29
4	Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels. Soft Matter, 2021, 17, 1566-1573.	1.2	12
5	Intrinsically adhesive, highly sensitive and temperature tolerant flexible sensors based on double network organohydrogels. Chemical Engineering Journal, 2021, 413, 127544.	6.6	72
6	Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Materials Horizons, 2021, 8, 351-369.	6.4	250
7	Recyclable, weldable, mechanically durable, and programmable liquid metal-elastomer composites. Journal of Materials Chemistry A, 2021, 9, 10953-10965.	5.2	42
8	Environmentally Stable, Highly Conductive, and Mechanically Robust Metallized Textiles. ACS Applied Electronic Materials, 2021, 3, 1477-1488.	2.0	23
9	Liquid Metal Superelastic Fiber Mat Enabling Highly Permeable Wearable Electronics Toward Comfortable e-Skins. Chemical Research in Chinese Universities, 2021, 37, 615-616.	1.3	2
10	Surface Tension of the Oxide Skin of Gallium-Based Liquid Metals. Langmuir, 2021, 37, 9017-9025.	1.6	65
11	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	7.8	38
12	Critical Review on the Physical Properties of Gallium-Based Liquid Metals and Selected Pathways for Their Alteration. Journal of Physical Chemistry C, 2021, 125, 20113-20142.	1.5	76
13	Recent advances in atmosphere water harvesting: Design principle, materials, devices, and applications. Nano Today, 2021, 40, 101283.	6.2	61
14	On the Interaction of Surfactants with Galliumâ€Based Liquid Metals. ChemistrySelect, 2021, 6, 10625-10636.	0.7	16
15	Liquid Metal–Based Soft Microfluidics. Small, 2020, 16, e1903841.	5.2	146
16	Bioinspired Tough Organohydrogel Dynamic Interfaces Enabled Subzero Temperature Antifrosting, Deicing, and Antiadhesion. ACS Applied Materials & Interfaces, 2020, 12, 55501-55509.	4.0	16
17	Densely Populated Bismuth Nanosphere Semiâ€Embedded Carbon Felt for Ultrahighâ€Rate and Stable Vanadium Redox Flow Batteries. Small, 2020, 16, e1907333.	5.2	55
18	Corrosion-Resistant Functional Diamond Coatings for Reliable Interfacing of Liquid Metals with Solid Metals. ACS Applied Materials & amp; Interfaces, 2020, 12, 40891-40900.	4.0	28

#	Article	IF	CITATIONS
19	Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. Soft Matter, 2020, 16, 8736-8759.	1.2	11
20	Interfacing of surfaces with gallium-based liquid metals – approaches for mitigation and augmentation of liquid metal adhesion on surfaces. Applied Materials Today, 2020, 21, 100868.	2.3	27
21	Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chemical Communications, 2020, 56, 13731-13747.	2.2	30
22	Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 56393-56402.	4.0	47
23	Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nature Communications, 2020, 11, 1126.	5.8	167
24	Bacterial outer membrane vesicles as a platform for biomedical applications: An update. Journal of Controlled Release, 2020, 323, 253-268.	4.8	160
25	Biomimetic Extremeâ€Temperature―and Environmentâ€Adaptable Hydrogels. ChemPhysChem, 2019, 20, 2139-2154.	1.0	86
26	Anisotropic liquid metal–elastomer composites. Journal of Materials Chemistry C, 2019, 7, 10166-10172.	2.7	53
27	A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. Journal of Materials Chemistry A, 2019, 7, 2581-2588.	5.2	103
28	Liquid Metalâ€Based Transient Circuits for Flexible and Recyclable Electronics. Advanced Functional Materials, 2019, 29, 1808739.	7.8	223
29	Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy, 2019, 58, 852-861.	8.2	49
30	Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 21895-21903.	4.0	80
31	Antifreezing Heat-Resistant Hollow Hydrogel Tubes. ACS Applied Materials & Interfaces, 2019, 11, 18746-18754.	4.0	32
32	Liquid Metal Nanodroplets: Light-Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating (Small 9/2019). Small, 2019, 15, 1970047.	5.2	0
33	Liquid Metal–Mediated Mechanochemical Polymerization. Macromolecular Rapid Communications, 2019, 40, e1900537.	2.0	35
34	Ionic–Covalent Hybrid Tough Hydrogels Enabled by the in Situ Release of Metal Ions from Insoluble Salts or Alkalis. ACS Applied Polymer Materials, 2019, 1, 3222-3226.	2.0	10
35	Robust, multiscale liquid-metal patterning enabled by a sacrificial sealing layer for flexible and wearable wireless powering. Journal of Materials Chemistry C, 2019, 7, 15243-15251.	2.7	37
36	Electric Actuation of Liquid Metal Droplets in Acidified Aqueous Electrolyte. Langmuir, 2019, 35, 372-381.	1.6	43

#	Article	IF	CITATIONS
37	Lightâ€Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating. Small, 2019, 15, e1804838.	5.2	102
38	Site‧pecific Oxidationâ€Induced Stiffening and Shape Morphing of Soft Tough Hydrogels. Macromolecular Materials and Engineering, 2019, 304, 1800589.	1.7	8
39	Mechanochemical Regulated Origami with Tough Hydrogels by Ion Transfer Printing. ACS Applied Materials & Interfaces, 2018, 10, 9077-9084.	4.0	51
40	Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 11204-11212.	4.0	53
41	Rational Fabrication of Antiâ€Freezing, Nonâ€Drying Tough Organohydrogels by Oneâ€Pot Solvent Displacement. Angewandte Chemie, 2018, 130, 6678-6681.	1.6	96
42	Rational Fabrication of Antiâ€Freezing, Nonâ€Drying Tough Organohydrogels by Oneâ€Pot Solvent Displacement. Angewandte Chemie - International Edition, 2018, 57, 6568-6571.	7.2	341
43	TiB2 barrier interlayer approach for HFCVD diamond deposition onto cemented carbide tools. Diamond and Related Materials, 2018, 83, 126-133.	1.8	21
44	Controlling Directional Liquid Motion on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films. Langmuir, 2018, 34, 1419-1428.	1.6	16
45	Robust Fabrication of Nonstick, Noncorrosive, Conductive Grapheneâ€Coated Liquid Metal Droplets for Dropletâ€Based, Floating Electrodes. Advanced Functional Materials, 2018, 28, 1706277.	7.8	93
46	Red and Nearâ€Infrared Lightâ€Cleavable Polymers. Macromolecular Rapid Communications, 2018, 39, e1800034.	2.0	34
47	Analysis and Transformations of Roomâ€Temperature Liquid Metal Interfaces – A Closer Look through Interfacial Tension. ChemPhysChem, 2018, 19, 1584-1592.	1.0	68
48	High compressive strength metallic architectures prepared via polyelectrolyte-brush assisted metal deposition on 3D printed lattices. Nano Structures Nano Objects, 2018, 16, 420-427.	1.9	10
49	Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Research, 2018, 11, 5716-5734.	5.8	27
50	A domain-based DNA circuit for smart single-nucleotide variant identification. Chemical Communications, 2018, 54, 1311-1314.	2.2	12
51	Tough protein organohydrogels. Journal of Materials Chemistry B, 2018, 6, 7366-7372.	2.9	40
52	Polydimethylsiloxane sponge supported DMAP on polymer brushes: Highly efficient recyclable base catalyst and ligand in water. Journal of Catalysis, 2018, 367, 264-268.	3.1	10
53	Organic Cotton Photocatalysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14759-14766.	3.2	27
54	Wearable Wire-Shaped Symmetric Supercapacitors Based on Activated Carbon-Coated Graphite Fibers. ACS Applied Materials & Interfaces, 2018, 10, 34302-34310.	4.0	46

#	Article	IF	CITATIONS
55	Analysis and Transformations of Roomâ€Temperature Liquid Metal Interfaces – A Closer Look through Interfacial Tension. ChemPhysChem, 2018, 19, 1551-1551.	1.0	4
56	Shape morphing of anisotropy-encoded tough hydrogels enabled by asymmetrically-induced swelling and site-specific mechanical strengthening. Journal of Materials Chemistry B, 2018, 6, 4731-4737.	2.9	21
57	Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Cross‣inked Centers. Macromolecular Rapid Communications, 2018, 39, e1800143.	2.0	38
58	Polydimethylsiloxane Spongeâ€Supported Nanometer Gold: Highly Efficient Recyclable Catalyst for Crossâ€Dehydrogenative Coupling in Water. ChemSusChem, 2018, 11, 3586-3590.	3.6	19
59	Adherent and low friction nanocrystalline diamond films via adsorbing organic molecules in self-assembly seeding process. Applied Surface Science, 2018, 456, 75-82.	3.1	18
60	Organic sponge photocatalysis. Green Chemistry, 2017, 19, 2925-2930.	4.6	57
61	Liquid metal droplets with high elasticity, mobility and mechanical robustness. Materials Horizons, 2017, 4, 591-597.	6.4	100
62	Bioinspired, Mechanoâ€Regulated Interfaces for Rationally Designed, Dynamically Controlled Collection of Oil Spills from Water. Global Challenges, 2017, 1, 1600014.	1.8	8
63	Hydrophilic Sponges for Leafâ€Inspired Continuous Pumping of Liquids. Advanced Science, 2017, 4, 1700028.	5.6	54
64	Elastic Sponges: Hydrophilic Sponges for Leafâ€Inspired Continuous Pumping of Liquids (Adv. Sci. 6/2017). Advanced Science, 2017, 4, .	5.6	1
65	Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A, 2017, 5, 16467-16497.	5.2	207
66	Defect-free, high resolution patterning of liquid metals using reversibly sealed, reusable polydimethylsiloxane microchannels for flexible electronic applications. Journal of Materials Chemistry C, 2017, 5, 6790-6797.	2.7	47
67	Mechano-regulated surface for manipulating liquid droplets. Nature Communications, 2017, 8, 14831.	5.8	88
68	Enhancing the colloidal stability of detonation synthesized diamond particles in aqueous solutions by adsorbing organic mono-, bi- and tridentate molecules. Journal of Colloid and Interface Science, 2017, 499, 102-109.	5.0	29
69	A DNA kinetics competition strategy of hybridization chain reaction for molecular information processing circuit construction. Chemical Communications, 2017, 53, 1789-1792.	2.2	11
70	Liquid metal sponges for mechanically durable, all-soft, electrical conductors. Journal of Materials Chemistry C, 2017, 5, 1586-1590.	2.7	136
71	Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chemical Communications, 2017, 53, 12536-12539.	2.2	44
72	Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Advances, 2017, 7, 47464-47499.	1.7	22

#	Article	IF	CITATIONS
73	High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry A, 2017, 5, 20044-20052.	5.2	108
74	Largeâ€Area Patterning of Metal Nanostructures by Dipâ€Pen Nanodisplacement Lithography for Optical Applications. Small, 2017, 13, 1702003.	5.2	29
75	Enhanced nucleation of diamond on three dimensional tools via stabilized colloidal nanodiamond in electrostatic self-assembly seeding process. Journal of Colloid and Interface Science, 2017, 506, 543-552.	5.0	25
76	Stacking chip for quantitative bioanalysis. Talanta, 2017, 175, 483-487.	2.9	1
77	Directed Aromatic C–H Activation/Acetoxylation Catalyzed by Pd Nanoparticles Supported on Graphene Oxide. Organic Letters, 2017, 19, 6470-6473.	2.4	26
78	"Freezingâ€ , morphing, and folding of stretchy tough hydrogels. Journal of Materials Chemistry B, 2017, 5, 5726-5732.	2.9	51
79	Microfluidic Patterning of Metal Structures for Flexible Conductors by In Situ Polymerâ€Assisted Electroless Deposition. Advanced Science, 2017, 4, 1600313.	5.6	41
80	Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	3
81	A Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochimica Acta, 2016, 222, 1709-1715.	2.6	40
82	Ultrahigh resolution, serial fabrication of three dimensionally-patterned protein nanostructures by liquid-mediated non-contact scanning probe lithography. RSC Advances, 2016, 6, 50331-50335.	1.7	4
83	Flexible Electronics: 3D Stretchable, Compressible, and Highly Conductive Metal oated Polydimethylsiloxane Sponges (Adv. Mater. Technol. 7/2016). Advanced Materials Technologies, 2016, 1, .	3.0	Ο
84	3D Stretchable, Compressible, and Highly Conductive Metal oated Polydimethylsiloxane Sponges. Advanced Materials Technologies, 2016, 1, 1600117.	3.0	71
85	Biomimicking Topographic Elastomeric Petals (Eâ€Petals) for Omnidirectional Stretchable and Printable Electronics. Advanced Science, 2015, 2, 1400021.	5.6	96
86	Low-temperature thermal stabilization of polyacrylontrile-based precursor fibers towards efficient preparation of carbon fibers with improved mechanical properties. Polymer, 2015, 76, 131-139.	1.8	28
87	Construction of 3D Polymer Brushes by Dipâ€Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and High‧peed Patterning. Small, 2015, 11, 613-621.	5.2	22
88	Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Materials, 2014, 6, e130-e130.	3.8	13
89	Aqueous and Airâ€Compatible Fabrication of Highâ€Performance Conductive Textiles. Chemistry - an Asian Journal, 2014, 9, 2170-2177.	1.7	36
90	Massively Parallel Patterning of Complex 2D and 3D Functional Polymer Brushes by Polymer Pen Lithography. ACS Applied Materials & Interfaces, 2014, 6, 11955-11964.	4.0	52

#	Article	IF	CITATIONS
91	Threeâ€Dimensional Compressible and Stretchable Conductive Composites. Advanced Materials, 2014, 26, 810-815.	11.1	156
92	Composite Materials: Threeâ€Dimensional Compressible and Stretchable Conductive Composites (Adv.) Tj ETQ	iq0 Q Q 11.1gB	T /Qverlock 10
93	A pneumatic valve controlled microdevice for bioanalysis. Biomicrofluidics, 2013, 7, 054116.	1.2	7
94	Liquidâ€Mediated Threeâ€Dimensional Scanning Probe Nanosculpting. Small, 2013, 9, 2851-2856.	5.2	13
95	Matrixâ€Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors. Advanced Materials, 2013, 25, 3343-3350.	11.1	160
96	Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale, 2013, 5, 7202.	2.8	88
97	Polymer Brushes: Liquid-Mediated Three-Dimensional Scanning Probe Nanosculpting (Small 17/2013). Small, 2013, 9, 2850-2850.	5.2	1
98	Polymer Brushes: High-Resolution, Large-Area, Serial Fabrication of 3D Polymer Brush Structures by Parallel Dip-Pen Nanodisplacement Lithography (Small 23/2012). Small, 2012, 8, 3567-3567.	5.2	1
99	Highâ€Resolution, Largeâ€Area, Serial Fabrication of 3D Polymer Brush Structures by Parallel Dipâ€Pen Nanodisplacement Lithography. Small, 2012, 8, 3568-3572.	5.2	28
100	Polymer Pen Lithography Using Dualâ€Elastomer Tip Arrays. Small, 2012, 8, 2664-2669.	5.2	37
101	Surfaceâ€Grafted Polymerâ€Assisted Electroless Deposition of Metals for Flexible and Stretchable Electronics. Chemistry - an Asian Journal, 2012, 7, 862-870.	1.7	61
102	Polymer Nanostructures Made by Scanning Probe Lithography: Recent Progress in Material Applications. Macromolecular Rapid Communications, 2012, 33, 359-373.	2.0	36
103	3D-patterned polymer brush surfaces. Nanoscale, 2011, 3, 4929.	2.8	58
104	Photonic porous siliconâ€based hybrid particles by softâ€lithography. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1754-1758.	0.8	6
105	Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms. Advanced Materials, 2011, 23, 3090-3094.	11.1	196
106	Fabrication of Arbitrary Threeâ€Dimensional Polymer Structures by Rational Control of the Spacing between Nanobrushes. Angewandte Chemie - International Edition, 2011, 50, 6506-6510.	7.2	68
107	Dispersion of polystyrene inside polystyreneâ€ <i>b</i> â€poly(<i>N</i> â€isopropylacrylamide) micelles in water. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 749-755.	2.4	6
108	Constructing the Phase Diagram of an Aqueous Solution of Poly(<i>N</i> â€isopropyl acrylamide) by Controlled Microevaporation in a Nanoliter Microchamber. Macromolecular Rapid Communications, 2008, 29, 1363-1367.	2.0	44

#	Article	IF	CITATIONS
109	Macromol. Rapid Commun. 16/2008. Macromolecular Rapid Communications, 2008, 29, n/a-n/a.	2.0	0
110	Nanoliter Dispensing Method by Degassed Poly(dimethylsiloxane) Microchannels and Its Application in Protein Crystallization. Analytical Chemistry, 2007, 79, 4924-4930.	3.2	64
111	Thermoresponsive Triblock Copolymer Aggregates Investigated by Laser Light Scattering. Journal of Physical Chemistry B, 2007, 111, 5111-5115.	1.2	48
112	Adsorption of Polymeric Micelles and Vesicles on a Surface Investigated by Quartz Crystal Microbalance. Journal of Physical Chemistry B, 2006, 110, 21055-21059.	1.2	29
113	Conformational Transition of Tethered Poly(N-isopropylacrylamide) Chains in Coronas of Micelles and Vesicles. Macromolecules, 2005, 38, 909-914.	2.2	100