Scott M Robeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141694/publications.pdf

Version: 2024-02-01

80 papers

3,948 citations

172457 29 h-index 60 g-index

82 all docs 82 docs citations

82 times ranked 5756 citing authors

#	Article	IF	CITATIONS
1	A refined index of model performance. International Journal of Climatology, 2012, 32, 2088-2094.	3.5	906
2	Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology, 1995, 15, 221-229.	3.5	294
3	Revisiting the recent California drought as an extreme value. Geophysical Research Letters, 2015, 42, 6771-6779.	4.0	177
4	Ambiguities inherent in sums-of-squares-based error statistics. Atmospheric Environment, 2009, 43, 749-752.	4.1	154
5	A Global Empirical Model for Nearâ€Realâ€₹ime Assessment of Seismically Induced Landslides. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1835-1859.	2.8	135
6	Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling. Water Resources Research, 1996, 32, 3137-3150.	4.2	124
7	Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sensing of Environment, 2016, 183, 65-81.	11.0	112
8	Increasing Growing-Season Length in Illinois during the 20th Century. Climatic Change, 2002, 52, 219-238.	3.6	111
9	Statistical Characteristics of Daily Precipitation: Comparisons of Gridded and Point Datasets. Journal of Applied Meteorology and Climatology, 2008, 47, 2468-2476.	1.5	95
10	Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophysical Research Letters, 2016, 43, 5079-5088.	4.0	92
11	Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations. Atmospheric Environment Part B Urban Atmosphere, 1990, 24, 303-312.	0.5	90
12	Settlement Design, Forest Fragmentation, and Landscape Change in Rondônia, Amazônia. Photogrammetric Engineering and Remote Sensing, 2003, 69, 805-812.	0.6	78
13	Estimating continental and terrestrial precipitation averages from rain-gauge networks. International Journal of Climatology, 1994, 14, 403-414.	3.5	75
14	Trends in time-varying percentiles of daily minimum and maximum temperature over North America. Geophysical Research Letters, 2004, 31, .	4.0	74
15	Natural and managed watersheds show similar responses to recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8553-8557.	7.1	72
16	On the Validity of Commonly Used Covariance and Variogram Functions on the Sphere. Mathematical Geosciences, 2011, 43, 721-733.	2.4	70
17	Assessment of three dimensionless measures of model performance. Environmental Modelling and Software, 2015, 73, 167-174.	4.5	59
18	Vector Correlation: Review, Exposition, and Geographic Application. Annals of the American Association of Geographers, 1992, 82, 103-116.	3.0	58

#	Article	IF	Citations
19	Projecting changes in regional temperature and precipitation extremes in the United States. Weather and Climate Extremes, 2016, 11, 28-40.	4.1	55
20	Spatial variability of micro-climatic conditions within a mid-latitude deciduous forest. Climate Research, 2000, 15, 137-149.	1.1	53
21	Spherical Methods for Spatial Interpolation: Review and Evaluation. Cartography and Geographic Information Science, 1997, 24, 3-20.	1.0	50
22	On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal. Climatic Change, 2016, 138, 127-142.	3.6	42
23	Influence of spatially variable instrument networks on climatic averages. Geophysical Research Letters, 1991, 18, 2249-2251.	4.0	40
24	Downscaling daily maximum and minimum temperatures in the midwestern USA: a hybrid empirical approach. International Journal of Climatology, 2007, 27, 439-454.	3.5	38
25	Relationships between mean and standard deviation of air temperature: implications for global warming. Climate Research, 2002, 22, 205-213.	1.1	38
26	The Influence of Climate Model Biases on Projections of Aridity and Drought. Journal of Climate, 2016, 29, 1269-1285.	3.2	36
27	Land-use/land-cover change and forest fragmentation in the Jigme Dorji National Park, Bhutan. Physical Geography, 2017, 38, 18-35.	1.4	36
28	Recent increases in tropical cyclone precipitation extremes over the US east coast. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
29	SPATIAL COHERENCE AND DECAY OF WIND SPEED AND POWER IN THE NORTH-CENTRAL UNITED STATES. Physical Geography, 1997, 18, 479-495.	1.4	33
30	COMPARISON OF APPROACHES FOR ESTIMATING TIME-AVERAGED PRECIPITATION USING DATA FROM THE USA. International Journal of Climatology, 1996, 16, 1103-1115.	3.5	32
31	Impacts of climate change on the state of Indiana: ensemble future projections based on statistical downscaling. Climatic Change, 2020, 163, 1881-1895.	3.6	32
32	Changes in Annual Land-Surface Precipitation Over the Twentieth and Early Twenty-First Century. Annals of the American Association of Geographers, 2010, 100, 729-739.	3.0	29
33	Relationships between fire severity and post-fire landscape pattern following a large mixed-severity fire in the Valle Vidal, New Mexico, USA. Forest Ecology and Management, 2011, 261, 1392-1400.	3.2	29
34	Demographic shifts in eastern US forests increase the impact of lateâ€season drought on forest growth. Ecography, 2020, 43, 1475-1486.	4.5	27
35	Determining the Spatial Representativeness of Air-Temperature Records Using Variogram-Nugget Time Series. Physical Geography, 2004, 25, 513-530.	1.4	26
36	Influence of spatial sampling and interpolation on estimates of air temperature change. Climate Research, 1994, 4, 119-126.	1.1	26

#	Article	IF	Citations
37	Trends in hemispheric warm and cold anomalies. Geophysical Research Letters, 2014, 41, 9065-9071.	4.0	24
38	Bias Correction of Paleoclimatic Reconstructions: A New Look at 1,200+ Years of Upper Colorado River Flow. Geophysical Research Letters, 2020, 47, e2019GL086689.	4.0	23
39	Higher CO 2 Concentrations and Lower Acidic Deposition Have Not Changed Drought Response in Tree Growth But Do Influence iWUE in Hardwood Trees in the Midwestern United States. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3798-3813.	3.0	22
40	Comparing the performance of multispectral vegetation indices and machine-learning algorithms for remote estimation of chlorophyll content: a case study in the Sundarbans mangrove forest. International Journal of Remote Sensing, 2015, 36, 3114-3133.	2.9	21
41	Capturing species-level drought responses in a temperate deciduous forest using ratios of photochemical reflectance indices between sunlit and shaded canopies. Remote Sensing of Environment, 2017, 199, 350-359.	11.0	21
42	Choosing an arbitrary calibration period for hydrologic models: How much does it influence water balance simulations?. Hydrological Processes, 2021, 35, e14045.	2.6	20
43	Incorporating rain-on-snow into the SWAT model results in more accurate simulations of hydrologic extremes. Journal of Hydrology, 2021, 603, 126972.	5.4	18
44	Spatio-temporal characterization of tropospheric ozone and its precursor pollutants NO2 and HCHO over South Asia. Science of the Total Environment, 2021, 809, 151135.	8.0	18
45	Resampling of network-induced variability in estimates of terrestrial air temperature change. Climatic Change, 1995, 29, 213-229.	3.6	17
46	Point-pattern analysis on the sphere. Spatial Statistics, 2014, 10, 76-86.	1.9	17
47	The impacts of climate change and urbanization on food retailers in urban sub-Saharan Africa. Current Opinion in Environmental Sustainability, 2022, 55, 101169.	6. 3	17
48	Spatial Variability of Landscape Pattern Change Following a Ponderosa Pine Wildfire in Northeastern New Mexico, USA. Physical Geography, 2009, 30, 410-429.	1.4	16
49	Climate change impacts and urban green space adaptation efforts: Evidence from U.S. municipal parks and recreation departments. Urban Climate, 2021, 39, 100962.	5.7	16
50	Land-use dynamics associated with mangrove deforestation for aquaculture and the subsequent abandonment of ponds. Science of the Total Environment, 2021, 791, 148320.	8.0	16
51	A simplified representation of the covariance structure of axially symmetric processes on the sphere. Statistics and Probability Letters, 2012, 82, 1346-1351.	0.7	15
52	Largeâ€scale control of the lower stratosphere on variability of tropical cyclone intensity. Geophysical Research Letters, 2017, 44, 4313-4323.	4.0	15
53	Investigating the use of Alos Prism data in detecting mangrove succession through canopy height estimation. Ecological Indicators, 2018, 87, 136-143.	6. 3	15
54	Climate and Other Models May Be More Accurate Than Reported. Eos, 2017, , .	0.1	15

#	Article	IF	CITATIONS
55	Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016. Remote Sensing of Environment, 2020, 250, 112046.	11.0	14
56	A conditional probability density function for forecasting ozone air quality data. Atmospheric Environment, 1989, 23, 689-692.	1.0	12
57	Comparing three approaches to reconstructing streamflow using tree rings in the Wabash River basin in the Midwestern, US. Journal of Hydrology, 2019, 573, 829-840.	5.4	12
58	Identifying Rogue Air Temperature Stations Using Cluster Analysis of Percentile Trends. Journal of Climate, 2005, 18, 1275-1287.	3.2	11
59	Spatiotemporal Variability of Tropical Cyclone Precipitation Using a High-Resolution, Gridded (0.25° ×) Tj ETQ	q1 _{3.2} 0.784	1314 rgBT /C
60	Accessibility to emergency food systems in south-central Indiana evaluated by spatiotemporal indices of pressure at county and pantry level. Nature Food, 2020, 1, 284-291.	14.0	11
61	Geographic Box Plots. Physical Geography, 2007, 28, 331-344.	1.4	10
62	Assessing bias in diameter at breast height estimated from tree rings and its effects on basal area increment and biomass. Dendrochronologia, 2021, 67, 125844.	2.2	10
63	Comparison of temporal and unresolved spatial variability in multiyear time-averages of air temperature. Climate Research, 1998, 10, 15-26.	1.1	10
64	Daily Precipitation Grids for South America. Bulletin of the American Meteorological Society, 2006, 87, 1095.	3.3	9
65	Applied climatology: drought. Progress in Physical Geography, 2008, 32, 303-309.	3.2	8
66	A critique of the objective function utilized in calculating the Thrifty Food Plan. PLoS ONE, 2019, 14, e0219895.	2.5	8
67	The effect of end-point adjustments on smoothing splines used for tree-ring standardization. Dendrochronologia, 2020, 60, 125665.	2.2	8
68	Perceptions and adaptation behavior of farmers to climate change in the upper Brahmaputra Valley, India. Environment, Development and Sustainability, 2021, 23, 15529-15549.	5.0	8
69	Monitoring Forest Infestation and Fire Disturbance in the Southern Appalachian Using a Time Series Analysis of Landsat Imagery. Remote Sensing, 2020, 12, 2412.	4.0	7
70	Seasonal and spatial variations of cross-correlation matrices used by stochastic weather generators. Climate Research, 2003, 24, 95-102.	1.1	7
71	Identifying the Distance of Vegetative Edge Effects Using Landsat TM Data and Geostatistical Methods. Geocarto International, 2001, 16, 61-70.	3.5	6
72	Patterns of North American Fern and Lycophyte Richness at Three Taxonomic Levels. American Fern Journal, 2013, 103, 193-214.	0.3	5

#	Article	IF	CITATIONS
73	Revisiting empirical ocean-colour algorithms for remote estimation of chlorophyll- <i>a</i> content on a global scale. International Journal of Remote Sensing, 2016, 37, 2682-2705.	2.9	5
74	A Spatial Resampling Perspective on the Depiction of Global Air Temperature Anomalies. Bulletin of the American Meteorological Society, 1995, 76, 1179-1183.	3.3	4
75	Intrinsic random functions and universal kriging on the circle. Statistics and Probability Letters, 2016, 108, 33-39.	0.7	4
76	Tracks of Death: Elephant Casualties along the Habaipur–Diphu Railway in Assam, India. Annals of the American Association of Geographers, 0, , 1-23.	2.2	4
77	Trends in the near-zero range of the minimum air-temperature distribution. Physical Geography, 2014, 35, 429-442.	1.4	2
78	Intrinsic random functions on the sphere. Statistics and Probability Letters, 2019, 146, 7-14.	0.7	2
79	SIMULATION OF DAILY TOTAL WIND ENERGY USING A TIME-SERIES MODEL. Physical Geography, 1998, 19, 463-484.	1.4	1
80	Statistical Climatology. , 2005, , 687-694.		1