

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141553/publications.pdf Version: 2024-02-01

KAZUVO

#	Article	IF	CITATIONS
1	An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 2007, 7, 4419-4444.	4.9	1,304
2	Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the Community Multi-scale Air Quality model: What controls surface ozone levels over Japan?. Atmospheric Environment, 2006, 40, 1856-1868.	4.1	130
3	Impacts of aerosols on summertime tropospheric photolysis frequencies and photochemistry over Central Eastern China. Atmospheric Environment, 2011, 45, 1817-1829.	4.1	127
4	Systematic analysis of interannual and seasonal variations of model-simulated tropospheric NO ₂ in Asia and comparison with GOME-satellite data. Atmospheric Chemistry and Physics, 2007, 7, 1671-1681.	4.9	122
5	Significant latitudinal gradient in the surface ozone spring maximum over East Asia. Geophysical Research Letters, 2005, 32, .	4.0	96
6	Future prediction of surface ozone over east Asia using Modelsâ€3 Community Multiscale Air Quality Modeling System and Regional Emission Inventory in Asia. Journal of Geophysical Research, 2008, 113, .	3.3	96
7	Near-ground ozone source attributions and outflow in central eastern China during MTX2006. Atmospheric Chemistry and Physics, 2008, 8, 7335-7351.	4.9	90
8	Theoretical Estimation of Lithium Isotopic Reduced Partition Function Ratio for Lithium Ions in Aqueous Solution. Journal of Physical Chemistry A, 2001, 105, 602-613.	2.5	81
9	PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: an interplay between the baseline pollution and meteorology. Scientific Reports, 2020, 10, 13442.	3.3	75
10	Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006). Atmospheric Chemistry and Physics, 2010, 10, 7353-7368.	4.9	67
11	Regional-specific emission inventory for NH3, N2O, and CH4 via animal farming in South, Southeast, and East Asia. Atmospheric Environment, 2004, 38, 7111-7121.	4.1	61
12	Evaluation of Premature Mortality Caused by Exposure to PM2.5 and Ozone in East Asia: 2000, 2005, 2020. Water, Air, and Soil Pollution, 2012, 223, 3445-3459.	2.4	53
13	MICS-Asia III: multi-model comparison and evaluation of aerosol over East Asia. Atmospheric Chemistry and Physics, 2019, 19, 11911-11937.	4.9	53
14	A country-specific, high-resolution emission inventory for methane from livestock in Asia in 2000. Atmospheric Environment, 2003, 37, 4393-4406.	4.1	50
15	MICS-Asia III: overview of model intercomparison and evaluation of acid deposition over Asia. Atmospheric Chemistry and Physics, 2020, 20, 2667-2693.	4.9	47
16	Model evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the context of MICS-Asia Phase III – Part 1: Overview. Atmospheric Chemistry and Physics, 2019, 19, 12993-13015.	4.9	46
17	Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7684-7698.	3.3	43
18	Comprehensive analyses of source sensitivities and apportionments of PM _{2.5} and ozone over Japan via multiple numerical techniques. Atmospheric Chemistry and Physics, 2020, 20, 10311-10329.	4.9	42

Kazuyo

#	Article	IF	CITATIONS
19	Sensitivity analysis of source regions to PM2.5 concentration at Fukue Island, Japan. Journal of the Air and Waste Management Association, 2014, 64, 445-452.	1.9	41
20	Rapid reduction in black carbon emissions from China: evidence from 2009–2019 observations on Fukue Island, Japan. Atmospheric Chemistry and Physics, 2020, 20, 6339-6356.	4.9	41
21	Evaluation and uncertainty investigation of the NO ₂ , CO and NH ₃ modeling over China under the framework of MICS-AsiaÂIII. Atmospheric Chemistry and Physics, 2020, 20, 181-202.	4.9	41
22	Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution. Atmospheric Chemistry and Physics, 2013, 13, 8265-8283.	4.9	39
23	Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate. Journal of the Air and Waste Management Association, 2014, 64, 374-387.	1.9	33
24	Overview of Model Inter-Comparison in Japan's Study for Reference Air Quality Modeling (J-STREAM). Atmosphere, 2018, 9, 19.	2.3	33
25	Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms. Atmospheric Environment, 2019, 198, 448-462.	4.1	30
26	Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India. Scientific Reports, 2021, 11, 9800.	3.3	29
27	Source region attribution of PM _{2.5} mass concentrations over Japan. Geochemical Journal, 2015, 49, 185-194.	1.0	28
28	Model Inter-Comparison Study for Asia (MICS-Asia) phase III: multimodel comparison of reactive nitrogen deposition over China. Atmospheric Chemistry and Physics, 2020, 20, 10587-10610.	4.9	23
29	Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway. Atmosphere, 2018, 9, 132.	2.3	21
30	Why do models perform differently on particulate matter over East Asia? A multi-model intercomparison study for MICS-Asia III. Atmospheric Chemistry and Physics, 2020, 20, 7393-7410.	4.9	21
31	Investigating the response of East Asian ozone to Chinese emission changes using a linear approach. Atmospheric Environment, 2012, 55, 475-482.	4.1	19
32	Seasonal Response of North Western Pacific Marine Ecosystems to Deposition of Atmospheric Inorganic Nitrogen Compounds from East Asia. Scientific Reports, 2018, 8, 9324.	3.3	17
33	Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan. Atmosphere, 2018, 9, 179.	2.3	16
34	Can Delhi's Pollution be Affected by Crop Fires in the Punjab Region?. Scientific Online Letters on the Atmosphere, 2020, 16, 86-91.	1.4	16
35	Influence of model grid resolution on NO ₂ vertical column densities over East Asia. Journal of the Air and Waste Management Association, 2014, 64, 436-444.	1.9	14
36	ldentifying key factors influencing model performance on ground-level ozone over urban areas in Japan through model inter-comparisons. Atmospheric Environment, 2020, 223, 117255.	4.1	14

Kazuyo

#	Article	IF	CITATIONS
37	Model Inter-Comparison for PM2.5 Components over urban Areas in Japan in the J-STREAM Framework. Atmosphere, 2020, 11, 222.	2.3	14
38	Impact of Chemical Production and Transport on Summertime Diurnal Ozone Behavior at a Mountainous Site in North China Plain. Scientific Online Letters on the Atmosphere, 2008, 4, 121-124.	1.4	13
39	Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan. Asian Journal of Atmospheric Environment, 2018, 12, 139-152.	1.1	13
40	Model Performance Differences in Sulfate Aerosol in Winter over Japan Based on Regional Chemical Transport Models of CMAQ and CAMx. Atmosphere, 2018, 9, 488.	2.3	11
41	Long-Term Simulations of Surface Ozone in East Asia During 1980 – 2020 with CMAQ and REAS Inventory. NATO Security Through Science Series C: Environmental Security, 2008, , 136-144.	0.1	10
42	Insights into seasonal variation of wet deposition over southeast Asia via precipitation adjustment from the findings of MICS-Asia III. Atmospheric Chemistry and Physics, 2021, 21, 8709-8734.	4.9	8
43	Uplifting of Asian Continental Pollution Plumes from the Boundary Layer to the Free Atmosphere over the Northwestern Pacific Rim in Spring. Scientific Online Letters on the Atmosphere, 2013, 9, 40-44.	1.4	7
44	Differences in Model Performance and Source Sensitivities for Sulfate Aerosol Resulting from Updates of the Aqueous- and Gas-Phase Oxidation Pathways for a Winter Pollution Episode in Tokyo, Japan. Atmosphere, 2019, 10, 544.	2.3	7
45	Theoretical Estimation of the Solvent Effect of the Lithium Isotopic Reduced Partition Function Ratio. Journal of Physical Chemistry A, 2003, 107, 7832-7844.	2.5	6
46	Observed and Modeled Mass Concentrations of Organic Aerosols and PM2.5 at Three Remote Sites around the East China Sea: Roles of Chemical Aging. Aerosol and Air Quality Research, 2017, 17, 3091-3105.	2.1	6
47	Dominance of the residential sector in Chinese black carbon emissions as identified from downwind atmospheric observations during the COVID-19 pandemic. Scientific Reports, 2021, 11, 23378.	3.3	6
48	Evaluation of the Effect of Surface Ozone on Main Crops in East Asia: 2000, 2005, and 2020. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	5
49	Diurnal variations of fossil and nonfossil carbonaceous aerosols in Beijing. Atmospheric Environment, 2015, 122, 349-356.	4.1	5
50	Model Performance Differences in Fine-Mode Nitrate Aerosol during Wintertime over Japan in the J-STREAM Model Inter-Comparison Study. Atmosphere, 2020, 11, 511.	2.3	5
51	Advantages of Continuous Monitoring of Hourly PM2.5 Component Concentrations in Japan for Model Validation and Source Sensitivity Analyses. Asian Journal of Atmospheric Environment, 2021, 15, 1-29.	1.1	5
52	Recent Trends and Future Projections in Asian Air Pollution. Journal of Disaster Research, 2007, 2, 163-172.	0.7	3
53	Year-round modeling of sulfate aerosol over Asia through updates of aqueous-phase oxidation and gas-phase reactions with stabilized Criegee intermediates. Atmospheric Environment: X, 2021, 12, 100123.	1.4	2
54	Investigating Impacts on Atmospheric Environment from Ship Emissions by Using Numerical Simulations. Journal of the Japan Institute of Marine Engineering, 2014, 49, 770-775.	0.0	1