
Richard D Fetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron, 2021, 109, 105-122.e7.	3.8	36
2	SVIP is a molecular determinant of lysosomal dynamic stability, neurodegeneration and lifespan. Nature Communications, 2021, 12, 513.	5.8	30
3	Elimination of nurse cell nuclei that shuttle into oocytes during oogenesis. Journal of Cell Biology, 2021, 220, .	2.3	4
4	Regulation of coordinated muscular relaxation in Drosophila larvae by a pattern-regulating intersegmental circuit. Nature Communications, 2021, 12, 2943.	5.8	10
5	Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. ELife, 2021, 10, .	2.8	25
6	The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood–brain barrier formation and maturation. ELife, 2021, 10, .	2.8	11
7	Inherited apicobasal polarity defines the key features of axon-dendrite polarity in a sensory neuron. Current Biology, 2021, 31, 3768-3783.e3.	1.8	7
8	Circuits for integrating learned and innate valences in the insect brain. ELife, 2021, 10, .	2.8	29
9	Assembly of synaptic active zones requires phase separation of scaffold molecules. Nature, 2020, 588, 454-458.	13.7	91
10	Presynaptic Homeostasis Opposes Disease Progression in Mouse Models of ALS-Like Degeneration: Evidence for Homeostatic Neuroprotection. Neuron, 2020, 107, 95-111.e6.	3.8	43
11	Recurrent architecture for adaptive regulation of learning in the insect brain. Nature Neuroscience, 2020, 23, 544-555.	7.1	108
12	Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites. ELife, 2020, 9, .	2.8	41
13	Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae. Nature Communications, 2019, 10, 2654.	5.8	42
14	Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nature Neuroscience, 2018, 21, 353-363.	7.1	103
15	Molecular Interface of Neuronal Innate Immunity, Synaptic Vesicle Stabilization, and Presynaptic Homeostatic Plasticity. Neuron, 2018, 100, 1163-1179.e4.	3.8	27
16	A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity. ELife, 2018, 7, .	2.8	21
17	A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell, 2018, 174, 730-743.e22.	13.5	731
18	MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. ELife, 2018, 7, .	2.8	68

2

RICHARD D FETTER

#	Article	IF	CITATIONS
19	Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a Drosophila feeding connectome. ELife, 2018, 7, .	2.8	54
20	Retrograde semaphorin–plexin signalling drives homeostatic synaptic plasticity. Nature, 2017, 550, 109-113.	13.7	91
21	The complete connectome of a learning and memory centre in an insect brain. Nature, 2017, 548, 175-182.	13.7	424
22	Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics. ELife, 2017, 6, .	2.8	87
23	MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. ELife, 2017, 6, .	2.8	42
24	Organization of the Drosophila larval visual circuit. ELife, 2017, 6, .	2.8	59
25	A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. ELife, 2016, 5, .	2.8	138
26	Selective Inhibition Mediates the Sequential Recruitment of Motor Pools. Neuron, 2016, 91, 615-628.	3.8	78
27	Microtubule Organization Determines Axonal Transport Dynamics. Neuron, 2016, 92, 449-460.	3.8	116
28	Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron, 2016, 89, 1016-1030.	3.8	130
29	Quantitative neuroanatomy for connectomics in Drosophila. ELife, 2016, 5, .	2.8	256
30	Synaptic transmission parallels neuromodulation in a central food-intake circuit. ELife, 2016, 5, .	2.8	111
31	Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nature Methods, 2015, 12, 319-322.	9.0	119
32	A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 2015, 520, 633-639.	13.7	410
33	Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude. Neuron, 2015, 88, 314-329.	3.8	110
34	A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nature Neuroscience, 2014, 17, 1830-1839.	7.1	74
35	A visual motion detection circuit suggested by Drosophila connectomics. Nature, 2013, 500, 175-181.	13.7	631
36	Elastic volume reconstruction from series of ultra-thin microscopy sections. Nature Methods, 2012, 9, 717-720.	9.0	265

3

RICHARD D FETTER

#	Article	lF	CITATIONS
37	Presynaptic Spectrin Is Essential for Synapse Stabilization. Current Biology, 2005, 15, 918-928.	1.8	151
38	Synaptic Specificity Is Generated by the Synaptic Guidepost Protein SYG-2 and Its Receptor, SYG-1. Cell, 2004, 116, 869-881.	13.5	277
39	Dynactin Is Necessary for Synapse Stabilization. Neuron, 2002, 34, 729-741.	3.8	227
40	Presynaptic target of Ca 2+ action on neuropeptide and acetylcholine release in Aplysia californica. Journal of Physiology, 2001, 535, 647-662.	1.3	27
41	Short-Range and Long-Range Guidance by Slit and Its Robo Receptors. Cell, 2000, 103, 1019-1032.	13.5	282