
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141308/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Correlative In Situ Multichannel Imaging for Largeâ€Area Monitoring of Morphology Formation in<br>Solutionâ€Processed Perovskite Layers. Solar Rrl, 2022, 6, 2100353.                                             | 3.1  | 9         |
| 2  | Optimization of SnO <sub>2</sub> electron transport layer for efficient planar perovskite solar cells with very low hysteresis. Materials Advances, 2022, 3, 456-466.                                             | 2.6  | 20        |
| 3  | Upscaling of perovskite solar modules: The synergy of fully evaporated layer fabrication and<br>allâ€laserâ€scribed interconnections. Progress in Photovoltaics: Research and Applications, 2022, 30,<br>360-373. | 4.4  | 35        |
| 4  | Snâ€Pb Mixed Perovskites with Fullereneâ€Derivative Interlayers for Efficient Fourâ€Terminal Allâ€Perovskite<br>Tandem Solar Cells. Advanced Functional Materials, 2022, 32, 2107650.                             | 7.8  | 30        |
| 5  | A Selfâ€Assembly Method for Tunable and Scalable Nanoâ€6tamps: A Versatile Approach for Imprinting<br>Nanostructures. Advanced Materials Technologies, 2022, 7, 2101008.                                          | 3.0  | 5         |
| 6  | Influence of Wind Speed on Volcano Ash Removal From Self-Cleaning Cover Films Dedicated for Photovoltaics. IEEE Journal of Photovoltaics, 2022, 12, 453-460.                                                      | 1.5  | 1         |
| 7  | Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.                                                                                  | 11.7 | 66        |
| 8  | Perovskite Solar Cells with Vivid, Angleâ€Invariant, and Customizable Inkjetâ€Printed Colorization for<br>Buildingâ€Integrated Photovoltaics. Solar Rrl, 2022, 6, .                                               | 3.1  | 6         |
| 9  | Emergence of Deep Traps in Long-Term Thermally Stressed CH3NH3PbI3 Perovskite Revealed by Thermally<br>Stimulated Currents. Journal of Physical Chemistry Letters, 2022, 13, 552-558.                             | 2.1  | 6         |
| 10 | Drying and Coating of Perovskite Thin Films: How to Control the Thin Film Morphology in Scalable Dynamic Coating Systems. ACS Applied Materials & Interfaces, 2022, 14, 11300-11312.                              | 4.0  | 12        |
| 11 | Energy yield modelling of textured perovskite/silicon tandem photovoltaics with thick perovskite top cells. Optics Express, 2022, 30, 14172.                                                                      | 1.7  | 11        |
| 12 | Perovskite Solar Modules. Solar Rrl, 2022, 6, .                                                                                                                                                                   | 3.1  | 3         |
| 13 | Lasing from Laminated Quasiâ€2D/3D Perovskite Planar Heterostructures. Advanced Functional<br>Materials, 2022, 32, .                                                                                              | 7.8  | 6         |
| 14 | An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles.<br>Nature Energy, 2022, 7, 107-115.                                                                       | 19.8 | 136       |
| 15 | Efficient Light Harvesting in Thick Perovskite Solar Cells Processed on Industry-Applicable Random<br>Pyramidal Textures. ACS Applied Energy Materials, 2022, 5, 6700-6708.                                       | 2.5  | 9         |
| 16 | Monolithic Two-Terminal Perovskite/CIS Tandem Solar Cells with Efficiency Approaching 25%. ACS Energy Letters, 2022, 7, 2273-2281.                                                                                | 8.8  | 40        |
| 17 | Laminated Monolithic Perovskite/Silicon Tandem Photovoltaics. Advanced Energy Materials, 2022, 12, .                                                                                                              | 10.2 | 14        |
| 18 | Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nature Energy, 2022, 7, 620-630.                                                                                               | 19.8 | 58        |

2

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Analytical Study of Solutionâ€Processed Tin Oxide as Electron Transport Layer in Printed Perovskite<br>Solar Cells. Advanced Materials Technologies, 2021, 6, 2000282.                                                                           | 3.0  | 16        |
| 20 | Perovskite Solar Cells with Allâ€Inkjetâ€Printed Absorber and Charge Transport Layers. Advanced<br>Materials Technologies, 2021, 6, 2000271.                                                                                                     | 3.0  | 72        |
| 21 | Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.                                                                                                                                 | 10.2 | 93        |
| 22 | Planarized and Compact Light Scattering Layers Based on Disordered Titania Nanopillars for Light<br>Extraction in Organic Light Emitting Diodes. Advanced Optical Materials, 2021, 9, 2001610.                                                   | 3.6  | 9         |
| 23 | Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient<br>inverted methylammonium-free perovskite solar cells. Energy and Environmental Science, 2021, 14,<br>5875-5893.                                 | 15.6 | 180       |
| 24 | Co-evaporation of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> : How Growth Conditions Impact<br>Phase Purity, Photostriction, and Intrinsic Stability. ACS Applied Materials & Interfaces, 2021, 13,<br>2642-2653.                          | 4.0  | 14        |
| 25 | Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature<br>Energy, 2021, 6, 167-175.                                                                                                                 | 19.8 | 164       |
| 26 | Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites. ACS Applied<br>Materials & Interfaces, 2021, 13, 15292-15304.                                                                                                  | 4.0  | 41        |
| 27 | Bimolecular and Auger Recombination in Phase-Stable Perovskite Thin Films from Cryogenic to Room<br>Temperature and Their Effect on the Amplified Spontaneous Emission Threshold. Journal of Physical<br>Chemistry Letters, 2021, 12, 2293-2298. | 2.1  | 13        |
| 28 | Photodegradation of Triple-Cation Perovskite Solar Cells: The Role of Spectrum and Bias Conditions.<br>ACS Applied Energy Materials, 2021, 4, 3083-3092.                                                                                         | 2.5  | 26        |
| 29 | How free exciton–exciton annihilation lets bound exciton emission dominate the photoluminescence<br>of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures. Journal of Applied<br>Physics, 2021, 129, .                | 1.1  | 11        |
| 30 | Phase evolution during annealing of low-temperature co-evaporated precursors for CZTSe solar cell absorbers. Journal of Applied Physics, 2021, 129, .                                                                                            | 1.1  | 3         |
| 31 | Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter, 2021, 4, 1391-1412.                                                                                          | 5.0  | 35        |
| 32 | In situ reflectance- photoluminescence imaging on solution-processed perovskite thin-films. , 2021, , .                                                                                                                                          |      | 0         |
| 33 | Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskites. Materials Today, 2021, 49, 35-47.                                              | 8.3  | 22        |
| 34 | From Groundwork to Efficient Solar Cells: On the Importance of the Substrate Material in<br>Coâ€Evaporated Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2104482.                                                             | 7.8  | 51        |
| 35 | Annual energy yield of mono- and bifacial silicon heterojunction solar modules with high-index dielectric nanodisk arrays as anti-reflective and light trapping structures. Optics Express, 2021, 29, 34494.                                     | 1.7  | 1         |
| 36 | In <sub>2</sub> O <sub>3</sub> :H-Based Hole-Transport-Layer-Free Tin/Lead Perovskite Solar Cells for<br>Efficient Four-Terminal All-Perovskite Tandem Solar Cells. ACS Applied Materials & Interfaces,<br>2021, 13, 46488-46498.                | 4.0  | 20        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Impact of <i>n</i> -Butylammonium Bromide on the Chemical and Electronic Structure of<br>Double-Cation Perovskite Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 53202-53210.                                                 | 4.0  | 7         |
| 38 | Harvesting Sub-bandgap Photons via Upconversion for Perovskite Solar Cells. ACS Applied Materials<br>& Interfaces, 2021, 13, 54874-54883.                                                                                                | 4.0  | 24        |
| 39 | Interpreting the Timeâ€Resolved Photoluminescence of Quasiâ€2D Perovskites. Advanced Materials<br>Interfaces, 2021, 8, 2101326.                                                                                                          | 1.9  | 7         |
| 40 | Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .                                                                                                                                | 10.2 | 66        |
| 41 | Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics. Organic Electronics, 2020, 77, 105526.                                                                                      | 1.4  | 7         |
| 42 | Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures.<br>Advanced Functional Materials, 2020, 30, 1907481.                                                                                     | 7.8  | 33        |
| 43 | Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Solar Energy<br>Materials and Solar Cells, 2020, 208, 110367.                                                                                          | 3.0  | 45        |
| 44 | Inkjetâ€Printed Micrometerâ€Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy<br>Materials, 2020, 10, 1903184.                                                                                                    | 10.2 | 142       |
| 45 | Vacuumâ€Assisted Growth of Lowâ€Bandgap Thin Films<br>(FA <sub>0.8</sub> MA <sub>0.2</sub> Sn <sub>0.5</sub> Pb <sub>0.5</sub> I <sub>3</sub> ) for<br>Allâ€Perovskite Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902583. | 10.2 | 60        |
| 46 | Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells.<br>Journal of Materials Chemistry A, 2020, 8, 670-682.                                                                                      | 5.2  | 47        |
| 47 | The Electronic Structure of MAPIâ€Based Perovskite Solar Cells: Detailed Band Diagram Determination<br>by Photoemission Spectroscopy Comparing Classical and Inverted Device Stacks. Advanced Energy<br>Materials, 2020, 10, 2002129.    | 10.2 | 33        |
| 48 | Energy Yield Advantages of Three-Terminal Perovskite-Silicon Tandem Photovoltaics. Joule, 2020, 4, 2387-2403.                                                                                                                            | 11.7 | 39        |
| 49 | Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties. Thin Solid Films, 2020, 709, 138223.                                                                                    | 0.8  | 7         |
| 50 | Triple-cation low-bandgap perovskite thin-films for high-efficiency four-terminal all-perovskite tandem solar cells. Journal of Materials Chemistry A, 2020, 8, 24608-24619.                                                             | 5.2  | 26        |
| 51 | Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells.<br>Journal of Materials Chemistry A, 2020, 8, 20122-20132.                                                                            | 5.2  | 27        |
| 52 | Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors. ACS Applied Materials & Interfaces, 2020, 12, 15774-15784.                                                                                                             | 4.0  | 86        |
| 53 | 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables<br>Efficiencies Exceeding 25% in Fourâ€Terminal Tandems with Silicon and CIGS. Advanced Functional<br>Materials, 2020, 30, 1909919.     | 7.8  | 123       |
| 54 | Toward Stable Perovskite Solar Cell Architectures: Robustness Against Temperature Variations of<br>Real-World Conditions. IEEE Journal of Photovoltaics, 2020, 10, 777-784.                                                              | 1.5  | 6         |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS<br>Applied Materials & Interfaces, 2020, 12, 11428-11437.                                                     | 4.0  | 11        |
| 56 | High Efficiency Perovskite‣ilicon Tandem Solar Cells: Effect of Surface Coating versus Bulk<br>Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553.                                    | 10.2 | 110       |
| 57 | Hot-embossed microcone-textured fluoropolymer as self-cleaning and anti-reflective photovoltaic module covers. Solar Energy Materials and Solar Cells, 2020, 214, 110582.                                       | 3.0  | 19        |
| 58 | Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Express, 2020, 28,<br>8878.                                                                                                    | 1.7  | 8         |
| 59 | 2D Surface Passivation in Semi-transparent Perovskite Top Solar Cells with Engineered Bandgap for<br>Tandem Photovoltaics. , 2020, , .                                                                          |      | 0         |
| 60 | Spontaneous Enhancement of the Power Output in Surface-Passivated Triple-Cation Perovskite Solar<br>Cells. , 2020, , .                                                                                          |      | 0         |
| 61 | Numerical study on the angular light trapping of the energy yield of organic solar cells with an optical cavity. Optics Express, 2020, 28, 37986.                                                               | 1.7  | 1         |
| 62 | Progress on Perovskite Solar Cells with All-Inkjet-Printed Absorber and Extraction Layers. , 2020, , .                                                                                                          |      | 1         |
| 63 | Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications. APL<br>Photonics, 2019, 4, 076104.                                                                                       | 3.0  | 21        |
| 64 | Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110080.                                                                        | 3.0  | 29        |
| 65 | Perovskite/Hole Transport Layer Interface Improvement by Solvent Engineering of Spiro-OMeTAD<br>Precursor Solution. ACS Applied Materials & Interfaces, 2019, 11, 44802-44810.                                  | 4.0  | 28        |
| 66 | Drying Dynamics of Solutionâ€Processed Perovskite Thinâ€Film Photovoltaics: In Situ Characterization,<br>Modeling, and Process Control. Advanced Energy Materials, 2019, 9, 1901581.                            | 10.2 | 42        |
| 67 | Liquid Glass for Photovoltaics: Multifunctional Front Cover Glass for Solar Modules. ACS Applied<br>Materials & Interfaces, 2019, 11, 35015-35022.                                                              | 4.0  | 13        |
| 68 | Sputtered Transparent Electrodes (IO:H and IZO) with Low Parasitic Near-Infrared Absorption for<br>Perovskite–Cu(In,Ca)Se <sub>2</sub> Tandem Solar Cells. ACS Applied Energy Materials, 2019, 2,<br>7823-7831. | 2.5  | 35        |
| 69 | Light Management: A Key Concept in High-Efficiency Perovskite/Silicon Tandem Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 3159-3170.                                                         | 2.1  | 81        |
| 70 | CZTSe solar cells prepared by co-evaporation of multilayer Cu–Sn/Cu,Zn,Sn,Se/ZnSe/Cu,Zn,Sn,Se<br>stacks. Physica Scripta, 2019, 94, 105007.                                                                     | 1.2  | 8         |
| 71 | Efficient All-Evaporated <i>pin</i> -Perovskite Solar Cells: A Promising Approach Toward Industrial<br>Large-Scale Fabrication. IEEE Journal of Photovoltaics, 2019, 9, 1249-1257.                              | 1.5  | 33        |
| 72 | Toward scalable perovskiteâ€based multijunction solar modules. Progress in Photovoltaics: Research<br>and Applications, 2019, 27, 733-738.                                                                      | 4.4  | 17        |

ULRICH W PAETZOLD

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Perovskite Solar Cells: Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing<br>2D/3D Perovskite Heterostructure (Adv. Energy Mater. 21/2019). Advanced Energy Materials, 2019, 9,<br>1970079. | 10.2 | 10        |
| 74 | Record Open ircuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite<br>Heterostructure. Advanced Energy Materials, 2019, 9, 1803699.                                                           | 10.2 | 325       |
| 75 | Model for the Prediction of the Lifetime and Energy Yield of Methyl Ammonium Lead Iodide Perovskite<br>Solar Cells at Elevated Temperatures. ACS Applied Materials & Interfaces, 2019, 11, 16517-16526.               | 4.0  | 19        |
| 76 | Microâ€cone textures for improved light inâ€coupling and retroreflectionâ€inspired light trapping at the front surface of solar modules. Progress in Photovoltaics: Research and Applications, 2019, 27, 593-602.     | 4.4  | 16        |
| 77 | Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31, e1806702.                                                                                                                 | 11.1 | 146       |
| 78 | Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nature<br>Communications, 2019, 10, 988.                                                                                      | 5.8  | 107       |
| 79 | High Open-Circuit Voltage in Wide-Bandgap Perovskite Photovoltaics with Passivation Layers Based on<br>Large Cations. , 2019, , .                                                                                     |      | 0         |
| 80 | Continuous Wave Amplified Spontaneous Emission in Phase-Stable Triple Cation Lead Halide Perovskite<br>Thin Films. , 2019, , .                                                                                        |      | 3         |
| 81 | Comment on "Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite<br>Lasers― ACS Nano, 2019, 13, 12257-12258.                                                                                   | 7.3  | 14        |
| 82 | Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 65-71.                                            | 3.0  | 50        |
| 83 | Scalable Processing of Low-Temperature TiO <sub>2</sub> Nanoparticles for High-Efficiency<br>Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 47-58.                                                    | 2.5  | 33        |
| 84 | Self-cleaning performance of superhydrophobic hot-embossed fluoropolymer films for photovoltaic modules. Solar Energy Materials and Solar Cells, 2019, 189, 188-196.                                                  | 3.0  | 59        |
| 85 | Energy yield of all thinâ€film perovskite/CIGS tandem solar modules. Progress in Photovoltaics:<br>Research and Applications, 2019, 27, 290-298.                                                                      | 4.4  | 31        |
| 86 | Design and Color Flexibility for Inkjet-Printed Perovskite Photovoltaics. ACS Applied Energy Materials, 2019, 2, 764-769.                                                                                             | 2.5  | 32        |
| 87 | Electronâ€Beamâ€Evaporated Nickel Oxide Hole Transport Layers for Perovskiteâ€Based Photovoltaics.<br>Advanced Energy Materials, 2019, 9, 1802995.                                                                    | 10.2 | 122       |
| 88 | Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics. Optics<br>Express, 2019, 27, A507.                                                                                            | 1.7  | 55        |
| 89 | Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers. Optics Letters, 2019, 44, 29.                                                                                                            | 1.7  | 63        |
| 90 | Low- and high-index self-assembled nanopillars as light outcoupling elements in organic light emitting diodes. , 2019, , .                                                                                            |      | 0         |

| #   | Article                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Nanophotonic perovskite thin-film solar cells by thermal nano-imprint lithography. , 2019, , .                                                                    |      | Ο         |
| 92  | Superhydrophobic self-cleaning cover sheets for photovoltaic modules. , 2019, , .                                                                                 |      | 0         |
| 93  | Continuous Wave Amplified Spontaneous Emission from Mixed Cation Perovskite devices. , 2019, , .                                                                  |      | 0         |
| 94  | Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials<br>& Interfaces, 2018, 10, 16390-16399.                        | 4.0  | 89        |
| 95  | Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1834-1839.                                                            | 2.5  | 156       |
| 96  | Freeform surface invisibility cloaking of interconnection lines in thin-film photovoltaic modules.<br>Solar Energy Materials and Solar Cells, 2018, 182, 294-301. | 3.0  | 7         |
| 97  | Perovskite–silicon tandem solar modules with optimised light harvesting. Energy and Environmental Science, 2018, 11, 1489-1498.                                   | 15.6 | 104       |
| 98  | Stable Perovskite Solar Cell Architectures: Robustness against Temperature Variations Under Real<br>World Conditions. , 2018, , .                                 |      | 1         |
| 99  | Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces. Sustainable Energy and Fuels, 2018, 2, 2754-2761.  | 2.5  | 61        |
| 100 | Inkjet Printed Perovskite Photovoltaics. , 2018, , .                                                                                                              |      | 0         |
| 101 | Towards Inexpensive and Stable All-Evaporated Perovskite Solar Cells for Industrial Large-Scale Fabrication. , 2018, , .                                          |      | 1         |
| 102 | Towards nano-patterned perovskite layers for enhanced absorption in solar cells. , 2018, , .                                                                      |      | 0         |
| 103 | Lightâ€Induced Degradation of Perovskite Solar Cells: The Influence of 4â€Tertâ€Butyl Pyridine and Gold.<br>Advanced Energy Materials, 2018, 8, 1800554.          | 10.2 | 62        |
| 104 | Disordered diffraction gratings tailored by shape-memory based wrinkling and their application to photovoltaics. Optical Materials Express, 2018, 8, 184.         | 1.6  | 24        |
| 105 | Inkjet-printed perovskite distributed feedback lasers. Optics Express, 2018, 26, A144.                                                                            | 1.7  | 68        |
| 106 | Rigorous wave-optical treatment of photon recycling in thermodynamics of photovoltaics: Perovskite<br>thin-film solar cells. Physical Review B, 2018, 98, .       | 1.1  | 31        |
| 107 | Spectral Dependence of Degradation under Ultraviolet Light in Perovskite Solar Cells. ACS Applied<br>Materials & Interfaces, 2018, 10, 21985-21990.               | 4.0  | 71        |
| 108 | Towards mass fabrication of hot embossed plant surface texture replicas as photovoltaic cover layers. , 2018, , .                                                 |      | 6         |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Impact of Fabrication Parameters on the Self-cleaning Performance of Hot-embossed Fluoropolymer<br>Films for Photovoltaic Modules. , 2018, , .                                       |      | 0         |
| 110 | Energy Yield Modelling of Wide Bandgap Perovskite-Based Tandem Solar Modules. , 2018, , .                                                                                            |      | 0         |
| 111 | Rigorous Wave-Optical Simulation of Photon Recycling in Nanostructured Perovskite Solar Cells. , 2018, , .                                                                           |      | 0         |
| 112 | Realization of Colors and Patterns for Inkjet-Printed Perovskite Solar Cells. , 2018, , .                                                                                            |      | 1         |
| 113 | Analysis of parasitic losses due to intermediate reflectors in silicon tandem solar cells. Solar Energy<br>Materials and Solar Cells, 2017, 163, 185-190.                            | 3.0  | 3         |
| 114 | Fourâ€Terminal Perovskite/Silicon Multijunction Solar Modules. Advanced Energy Materials, 2017, 7,<br>1602807.                                                                       | 10.2 | 75        |
| 115 | Scalable perovskite/CICS thin-film solar module with power conversion efficiency of 17.8%. Journal of Materials Chemistry A, 2017, 5, 9897-9906.                                     | 5.2  | 47        |
| 116 | Low-cost electrodes for stable perovskite solar cells. Applied Physics Letters, 2017, 110, .                                                                                         | 1.5  | 15        |
| 117 | Interconnection Optimization for Highly Efficient Perovskite Modules. IEEE Journal of Photovoltaics, 2017, 7, 404-408.                                                               | 1.5  | 86        |
| 118 | Texture of the Viola Flower for Light Harvesting in Photovoltaics. ACS Photonics, 2017, 4, 2687-2692.                                                                                | 3.2  | 43        |
| 119 | Additiveâ€Assisted Crystallization Dynamics in Twoâ€Step Fabrication of Perovskite Solar Cells. Physica<br>Status Solidi (A) Applications and Materials Science, 2017, 214, 1700509. | 0.8  | 20        |
| 120 | Allâ€Angle Invisibility Cloaking of Contact Fingers on Solar Cells by Refractive Freeâ€Form Surfaces.<br>Advanced Optical Materials, 2017, 5, 1700164.                               | 3.6  | 28        |
| 121 | Optical Analysis of Planar Multicrystalline Perovskite Solar Cells. Advanced Optical Materials, 2017, 5,<br>1700151.                                                                 | 3.6  | 51        |
| 122 | Infiltrated photonic crystals for light-trapping in CuInSe_2 nanocrystal-based solar cells. Optics<br>Express, 2017, 25, A502.                                                       | 1.7  | 9         |
| 123 | Triple cation mixed-halide perovskites for tunable lasers. Optical Materials Express, 2017, 7, 4082.                                                                                 | 1.6  | 30        |
| 124 | Broadening of Light Coupling to Waveguide Modes in Solar Cells by Disordered Grating Textures.<br>Applied Sciences (Switzerland), 2017, 7, 725.                                      | 1.3  | 3         |
| 125 | View Factor Model and Validation for Bifacial PV and Diffuse Shade on Single-Axis Trackers. , 2017, , .                                                                              |      | 22        |
| 126 | Notice of Removal High efficiency blade coated perovskite photovoltaic modules by subcell interconnection optimization. , 2017, , .                                                  |      | 0         |

8

| #   | Article                                                                                                                                                                                     | IF                | CITATIONS     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 127 | Performance of Silicon Solar Cells with Cloaked Contact Fingers under Realistic Conditions. , 2017, , .                                                                                     |                   | 1             |
| 128 | Thermodynamics of photon recycling in four terminal perovskite/Si tandem solar cells. , 2017, , .                                                                                           |                   | 0             |
| 129 | Highly Reflective Dielectric Back Reflector for Improved Efficiency of Tandem Thin-Film Solar Cells.<br>International Journal of Photoenergy, 2016, 2016, 1-7.                              | 1.4               | 8             |
| 130 | Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics. Advanced Energy Materials, 2016, 6, 1600386.                                                                          | 10.2              | 158           |
| 131 | Prototyping of nanophotonic grating back contacts for light trapping in planar silicon solar cells.<br>Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1949-1954.  | 0.8               | 3             |
| 132 | Light management in flexible thinâ€film solar cells on transparent plastic substrates. Physica Status<br>Solidi (A) Applications and Materials Science, 2016, 213, 1955-1963.               | 0.8               | 4             |
| 133 | Efficient post passivation light-management concepts for silicon heterojunction solar cells. , 2016, , .                                                                                    |                   | 0             |
| 134 | Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Applied Physics Letters, 2016, 109, .                                     | 1.5               | 82            |
| 135 | 3Dâ€printed external light trap for solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 623-633.                                                                   | 4.4               | 26            |
| 136 | Optical simulation of tailored disorder for nanophotonic thin-film solar cells. , 2016, , .                                                                                                 |                   | 0             |
| 137 | Combination of Advanced Optical Modelling with Electrical Simulation for Performance Evaluation of Practical 4-terminal Perovskite/c-Si Tandem Modules. Energy Procedia, 2016, 92, 669-677. | 1.8               | 14            |
| 138 | Photovoltaics: Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics (Adv. Energy) Tj ETQq0 0                                                                                | 0 rgBT /O<br>10.2 | verlock 10 Tf |
| 139 | Post passivation light trapping back contacts for silicon heterojunction solar cells. Nanoscale, 2016,<br>8, 18726-18733.                                                                   | 2.8               | 8             |
| 140 | Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. Journal of<br>Materials Chemistry A, 2016, 4, 19207-19213.                                               | 5.2               | 112           |
| 141 | Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved<br>Photoluminescence. Physical Review Applied, 2016, 6, .                                              | 1.5               | 194           |
| 142 | Crystallisation dynamics in wide-bandgap perovskite films. Journal of Materials Chemistry A, 2016, 4, 10524-10531.                                                                          | 5.2               | 29            |
| 143 | Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. Journal of Materials Chemistry A, 2016, 4, 3792-3797.                            | 5.2               | 130           |
| 144 | Interfacial Depletion Regions: Beyond the Space Charge Limit in Thick Bulk Heterojunctions. ACS<br>Applied Materials & Interfaces, 2016, 8, 2211-2219.                                      | 4.0               | 23            |

| #   | Article                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Pinhole-free perovskite films for efficient solar modules. Energy and Environmental Science, 2016, 9, 484-489.                                                                | 15.6 | 252       |
| 146 | Optical loss analyses and energy yield modelling of perovskite/silicon multijunction solar cells. , 2016, , .                                                                 |      | 5         |
| 147 | Progress on nanopatterned front electrodes for perovskite thin-film solar cells. , 2016, , .                                                                                  |      | 0         |
| 148 | Nanophotonic light management for silicon heterojunction solar cells with planar passivation layers<br>– Implementation and material perspective. , 2016, , .                 |      | 0         |
| 149 | Broadening of Light Coupling to Waveguide Modes in Solar Cells by Disordered Grating Textures. , 2016, , .                                                                    |      | 0         |
| 150 | Simulation of Absorption Enhancement and Optical Modes in CIS Nanocrystal Embedded Photonic<br>Crystal Designs. , 2016, , .                                                   |      | 0         |
| 151 | Direct Laser Written Nanophotonics for Embedded CIS Nanocrystal Solar Cells. , 2016, , .                                                                                      |      | 0         |
| 152 | Angular dependence of light trapping in nanophotonic thin-film solar cells. Optics Express, 2015, 23,<br>A1575.                                                               | 1.7  | 10        |
| 153 | Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells. EPJ<br>Photovoltaics, 2015, 6, 60501.                                         | 0.8  | 3         |
| 154 | Periodic nano-textures enhance efficiency in multi-junction silicon thin-film solar cells. Physica<br>Status Solidi (A) Applications and Materials Science, 2015, 212, 30-35. | 0.8  | 6         |
| 155 | Improved flexible thin-film solar cells with nanoimprinted light management textures. , 2015, , .                                                                             |      | 2         |
| 156 | Nanoscale investigation of polarization-dependent light coupling to individual waveguide modes of nanophotonic thin-film solar cells. , 2015, , .                             |      | 0         |
| 157 | 3D-printed external light traps for solar cells. , 2015, , .                                                                                                                  |      | 0         |
| 158 | Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes. Optica, 2015, 2, 850.                                                             | 4.8  | 50        |
| 159 | Light Management in Flexible Thin-Film Solar Cells—The Role of Nanoimprinted Textures and Tilted<br>Surfaces. IEEE Journal of Photovoltaics, 2015, 5, 1646-1653.              | 1.5  | 8         |
| 160 | Development of perovskite solar cells with nanophotonic front electrodes for improved light incoupling. , 2015, , .                                                           |      | 1         |
| 161 | Influence of Interface Textures on Light Management in Thin-Film Silicon Solar Cells With<br>Intermediate Reflector. IEEE Journal of Photovoltaics, 2015, 5, 33-39.           | 1.5  | 15        |
| 162 | High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short<br>air-aging step. Organic Electronics, 2015, 26, 30-35.                  | 1.4  | 92        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Nanoimprint texturing of transparent flexible substrates for improved light management in thinâ€film<br>solar cells. Physica Status Solidi - Rapid Research Letters, 2015, 9, 215-219.                                | 1.2  | 16        |
| 164 | Nanophotonic front electrodes for perovskite solar cells. Applied Physics Letters, 2015, 106, .                                                                                                                       | 1.5  | 52        |
| 165 | An electron beam evaporated TiO <sub>2</sub> layer for high efficiency planar perovskite solar cells<br>on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015, 3,<br>22824-22829. | 5.2  | 116       |
| 166 | Nanoscale Investigation of Polarization-Dependent Light Coupling to Individual Waveguide Modes in<br>Nanophotonic Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1523-1527.                           | 1.5  | 3         |
| 167 | Cloaking of Metal Contacts on Solar Cells. , 2015, , .                                                                                                                                                                |      | 2         |
| 168 | Analysis of light propagation in thin-film solar cells by dual-probe scanning near-field optical microscopy. , 2014, , .                                                                                              |      | 4         |
| 169 | Progress on nanopatterned front electrodes for organic solar cells. , 2014, , .                                                                                                                                       |      | 0         |
| 170 | Optimizing the geometry of plasmonic reflection grating back contacts for improved light trapping in prototype amorphous silicon thin-film solar cells. Proceedings of SPIE, 2014, , .                                | 0.8  | 0         |
| 171 | Disordered nanophotonic light management in thin-film photovoltaics. , 2014, , .                                                                                                                                      |      | 0         |
| 172 | Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors. Optics Express, 2014, 22, A1270.                                                                                             | 1.7  | 26        |
| 173 | UV nanoimprint for the replication of etched ZnO:Al textures applied in thinâ€film silicon solar cells.<br>Progress in Photovoltaics: Research and Applications, 2014, 22, 1226-1236.                                 | 4.4  | 36        |
| 174 | Nano-imprint lithography for advanced light management concepts in multi-junction solar cells. ,<br>2014, , .                                                                                                         |      | 2         |
| 175 | On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells. Journal of Photonics for Energy, 2014, 5, 057004.                              | 0.8  | 12        |
| 176 | Thin-film Silicon Solar Cells on Dry Etched Textured Glass. Energy Procedia, 2014, 44, 151-159.                                                                                                                       | 1.8  | 20        |
| 177 | Solutionâ€Based Silicon in Thinâ€Film Solar Cells. Advanced Energy Materials, 2014, 4, 1301871.                                                                                                                       | 10.2 | 31        |
| 178 | Disorder improves nanophotonic light trapping in thin-film solar cells. Applied Physics Letters, 2014, 104, .                                                                                                         | 1.5  | 52        |
| 179 | Fabrication of Light-Scattering Multiscale Textures by Nanoimprinting for the Application to Thin-Film Silicon Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 772-777.                                          | 1.5  | 12        |
| 180 | Nanoscale Observation of Waveguide Modes Enhancing the Efficiency of Solar Cells. Nano Letters, 2014, 14, 6599-6605.                                                                                                  | 4.5  | 34        |

ULRICH W PAETZOLD

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Thermodynamics of light management in photovoltaic devices. Physical Review B, 2014, 90, .                                                                                                                                                                | 1.1 | 163       |
| 182 | Thin-film silicon solar cell development on imprint-textured glass substrates. Materials Science and<br>Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 617-622.                                                                 | 1.7 | 26        |
| 183 | Investigation of the impact of the rearâ€dielectric/silver back reflector design on the optical performance of thinâ€film silicon solar cells by means of detached reflectors. Progress in Photovoltaics: Research and Applications, 2013, 21, 1236-1247. | 4.4 | 19        |
| 184 | Simulation-based analysis of plasmonic light trapping in thin-film silicon solar cells. , 2013, , .                                                                                                                                                       |     | 1         |
| 185 | Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon<br>solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013,<br>178, 630-634.                             | 1.7 | 15        |
| 186 | Thin-film silicon solar cells applying optically decoupled back reflectors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 645-650.                                                                       | 1.7 | 11        |
| 187 | Plasmon-induced photoexcitation of "hot―electrons and "hot―holes in amorphous silicon<br>photosensitive devices containing silver nanoparticles. Journal of Applied Physics, 2013, 113, .                                                                 | 1.1 | 17        |
| 188 | Spectrally selective intermediate reflectors for tandem thin-film silicon solar cells. , 2013, , .                                                                                                                                                        |     | 5         |
| 189 | In-situ determination of the effective absorbance of thin <i>μ</i> c-Si:H layers growing on rough ZnO:Al.<br>EPJ Photovoltaics, 2013, 4, 40602.                                                                                                           | 0.8 | 1         |
| 190 | Developing Efficient Upconverter Silicon Solar Cell Devices. , 2013, , .                                                                                                                                                                                  |     | 1         |
| 191 | In Situ Current Determination of a-Si/μc-Si Tandem Solar Cells via Transmission Measurements During<br>Silicon PECVD. IEEE Journal of Photovoltaics, 2012, 2, 77-82.                                                                                      | 1.5 | 1         |
| 192 | Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. Journal of Photonics for Energy, 2012, 2, 027002.                                                                                        | 0.8 | 18        |
| 193 | Study of detached back reflector designs for thinâ€film silicon solar cells. Physica Status Solidi - Rapid<br>Research Letters, 2012, 6, 65-67.                                                                                                           | 1.2 | 19        |
| 194 | Plasmonic Reflection-Grating Back Contacts for Light Trapping in Thin-Film Silicon Solar Cells. , 2012, ,                                                                                                                                                 |     | 0         |
| 195 | Light harvesting in thin-film silicon solar cells and detectors by silver nanostructures. , 2011, , .                                                                                                                                                     |     | Ο         |
| 196 | Study of thin-film silicon solar cell back reflectors and potential of detached reflectors. Energy<br>Procedia, 2011, 10, 106-110.                                                                                                                        | 1.8 | 19        |
| 197 | Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Optics Express, 2011, 19, A1219.                                                                                                                                      | 1.7 | 93        |
| 198 | Plasmonic reflection grating back contacts for microcrystalline silicon solar cells. Applied Physics<br>Letters, 2011, 99, .                                                                                                                              | 1.5 | 122       |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Optical simulations and prototyping of microcrystalline silicon solar cells with integrated plasmonic reflection grating back contacts. Proceedings of SPIE, 2011, , .              | 0.8 | 1         |
| 200 | Localized plasmonic losses at metal back contacts of thin-film silicon solar cells. , 2010, , .                                                                                     |     | 18        |
| 201 | Simulation of tandem thin-film silicon solar cells. Proceedings of SPIE, 2010, , .                                                                                                  | 0.8 | 5         |
| 202 | Charge Carrier and Exciton Dynamics in Perovskites Revealed by Timeâ€Integrated Photoluminescence<br>after Doubleâ€Pulse Excitation. Advanced Materials Technologies, 0, , 2200152. | 3.0 | 2         |