
Axel Behrens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3140950/publications.pdf Version: 2024-02-01

AVEL REHDENS

#	Article	IF	CITATIONS
1	The Jun-dependent axon regeneration gene program: Jun promotes regeneration over plasticity. Human Molecular Genetics, 2022, 31, 1242-1262.	1.4	7
2	METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cellular and Molecular Life Sciences, 2022, 79, 135.	2.4	47
3	Tissue architecture in tumor initiation and progression. Trends in Cancer, 2022, 8, 494-505.	3.8	31
4	USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nature Communications, 2022, 13, 2070.	5.8	35
5	GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature, 2022, 607, 163-168.	13.7	31
6	Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nature Protocols, 2021, 16, 239-262.	5.5	50
7	The deubiquitylase USP9X controls ribosomal stalling. Journal of Cell Biology, 2021, 220, .	2.3	20
8	High expression of vinculin predicts poor prognosis and distant metastasis and associates with influencing tumor-associated NK cell infiltration and epithelial-mesenchymal transition in gastric cancer. Aging, 2021, 13, 5197-5225.	1.4	18
9	Proteasomal degradation of the tumour suppressor FBW7 requires branched ubiquitylation by TRIP12. Nature Communications, 2021, 12, 2043.	5.8	21
10	Tissue clearing to examine tumour complexity in three dimensions. Nature Reviews Cancer, 2021, 21, 718-730.	12.8	50
11	JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. JCl Insight, 2021, 6, .	2.3	22
12	Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI Insight, 2021, 6, .	2.3	11
13	PARP1 Inhibitor Combined With Oxaliplatin Efficiently Suppresses Oxaliplatin Resistance in Gastric Cancer-Derived Organoids via Homologous Recombination and the Base Excision Repair Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 719192.	1.8	5
14	Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas. Cell Stem Cell, 2021, 28, 2000-2008.e4.	5.2	43
15	USP28 deletion and small-molecule inhibition destabilizes c-MYC and elicits regression of squamous cell lung carcinoma. ELife, 2021, 10, .	2.8	25
16	Dual-view oblique plane microscopy. , 2021, , .		0
17	Cep55 promotes cytokinesis of neural progenitors but is dispensable for most mammalian cell divisions. Nature Communications, 2020, 11, 1746.	5.8	37
18	Dual-view oblique plane microscopy (dOPM). Biomedical Optics Express, 2020, 11, 7204.	1.5	29

#	Article	IF	CITATIONS
19	<i>ATMIN</i> Is a Tumor Suppressor Gene in Lung Adenocarcinoma. Cancer Research, 2019, 79, 5159-5166.	0.4	10
20	CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nature Cell Biology, 2019, 21, 1425-1435.	4.6	94
21	Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature, 2019, 566, 126-130.	13.7	119
22	LUBAC determines chemotherapy resistance in squamous cell lung cancer. Journal of Experimental Medicine, 2019, 216, 450-465.	4.2	57
23	Paligenosis: prepare to regenerate!. EMBO Journal, 2018, 37, .	3.5	10
24	FLYWCH1, a Novel Suppressor of Nuclear β-Catenin, Regulates Migration and Morphology in Colorectal Cancer. Molecular Cancer Research, 2018, 16, 1977-1990.	1.5	19
25	The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. Journal of Clinical Investigation, 2018, 128, 1326-1337.	3.9	77
26	Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression. Cell Reports, 2017, 21, 966-978.	2.9	88
27	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.	7.7	122
28	Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation. ELife, 2016, 5, .	2.8	17
29	YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK–STAT3 Signaling. Gastroenterology, 2016, 151, 526-539.	0.6	178
30	Perturbed hematopoiesis in mice lacking ATMIN. Blood, 2016, 128, 2017-2021.	0.6	4
31	Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours. Nature Cell Biology, 2016, 18, 1346-1356.	4.6	75
32	Fbw7 and its counteracting forces in stem cells and cancer: Oncoproteins in the balance. Seminars in Cancer Biology, 2016, 36, 52-61.	4.3	30
33	c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea. ENeuro, 2016, 3, ENEURO.0047-16.2016.	0.9	16
34	Usp28 Counteracts Fbw7 in Intestinal Homeostasis and Cancer. Cancer Research, 2015, 75, 1181-1186.	0.4	60
35	The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nature Communications, 2015, 6, 6782.	5.8	71
36	Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Reports, 2015, 16, 571-581.	2.0	148

#	Article	IF	CITATIONS
37	DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genetics, 2015, 11, e1005645.	1.5	15
38	UBR5-mediated ubiquitination of ATMIN is required for ionizing radiation-induced ATM signaling and function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12091-12096.	3.3	50
39	Dual Regulation of Fbw7 Function and Oncogenic Transformation by Usp28. Cell Reports, 2014, 9, 1099-1109.	2.9	76
40	Impact of genomic damage and ageing on stem cell function. Nature Cell Biology, 2014, 16, 201-207.	4.6	171
41	Loss of Fbw7 Reprograms Adult Pancreatic Ductal Cells into α, Î′, and β Cells. Cell Stem Cell, 2014, 15, 139-153.	5.2	118
42	The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. Journal of Clinical Investigation, 2014, 124, 3407-3418.	3.9	124
43	Replication stress links structural and numerical cancer chromosomal instability. Nature, 2013, 494, 492-496.	13.7	694
44	Fbw7 Repression by Hes5 Creates a Feedback Loop That Modulates Notch-Mediated Intestinal and Neural Stem Cell Fate Decisions. PLoS Biology, 2013, 11, e1001586.	2.6	56
45	Arginine methylation of the c-Jun coactivator RACO-1 is required for c-Jun/AP-1 activation. EMBO Journal, 2013, 32, 1556-1567.	3.5	34
46	Arginine methylation: Making its mark on AP-1 gene activation. Cell Cycle, 2013, 12, 2333-2334.	1.3	2
47	Perturbed Hematopoiesis In Mice Lacking ATMIN (an ATM co-Factor). Blood, 2013, 122, 2412-2412.	0.6	11
48	NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO Journal, 2012, 31, 593-605.	3.5	224
49	Vanilloid Receptor-1 Regulates Neurogenic Inflammation in Colon and Protects Mice from Colon Cancer. Cancer Research, 2012, 72, 1705-1716.	0.4	50
50	c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. Journal of Cell Biology, 2012, 198, 127-141.	2.3	233
51	NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment. Cell Stem Cell, 2012, 10, 583-594.	5.2	207
52	The GATA2 Transcriptional Network Is Requisite for RAS Oncogene-Driven Non-Small Cell Lung Cancer. Cell, 2012, 149, 642-655.	13.5	247
53	Neuronal câ€Jun is required for successful axonal regeneration, but the effects of phosphorylation of its Nâ€ŧerminus are moderate. Journal of Neurochemistry, 2012, 121, 607-618.	2.1	65
54	Competition between NBS1 and ATMIN Controls ATM Signaling Pathway Choice. Cell Reports, 2012, 2, 1498-1504.	2.9	38

#	Article	IF	CITATIONS
55	c-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron, 2012, 75, 633-647.	3.8	661
56	c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex. Nature, 2011, 469, 231-235.	13.7	114
57	The F-box protein Fbw7 is required for cerebellar development. Developmental Biology, 2011, 358, 201-212.	0.9	36
58	ATMIN Is Required for Maintenance of Genomic Stability and Suppression of B Cell Lymphoma. Cancer Cell, 2011, 19, 587-600.	7.7	33
59	FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. Journal of Experimental Medicine, 2011, 208, 295-312.	4.2	159
60	Peripheral facial nerve axotomy in mice causes sprouting of motor axons into perineuronal central white matter: Time course and molecular characterization. Journal of Comparative Neurology, 2010, 518, 699-721.	0.9	24
61	Increased skeletal VEGF enhances β-catenin activity and results in excessively ossified bones. EMBO Journal, 2010, 29, 424-441.	3.5	184
62	Identification of a co-activator that links growth factor signalling to c-Jun/AP-1 activation. Nature Cell Biology, 2010, 12, 963-972.	4.6	37
63	Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nature Neuroscience, 2010, 13, 1365-1372.	7.1	158
64	The ATM Cofactor ATMIN Protects against Oxidative Stress and Accumulation of DNA Damage in the Aging Brain. Journal of Biological Chemistry, 2010, 285, 38534-38542.	1.6	50
65	Bag1-L Is a Phosphorylation-Dependent Coactivator of c-Jun during Neuronal Apoptosis. Molecular and Cellular Biology, 2010, 30, 3842-3852.	1.1	13
66	F-box and WD Repeat Domain-Containing 7 Regulates Intestinal Cell Lineage Commitment and Is a Haploinsufficient Tumor Suppressor. Gastroenterology, 2010, 139, 929-941.	0.6	114
67	JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO Journal, 2009, 28, 1843-1854.	3.5	137
68	ATMINistrating ATM signaling. Cell Cycle, 2008, 7, 3483-3486.	1.3	33
69	c-Jun is a negative regulator of myelination. Journal of Cell Biology, 2008, 181, 625-637.	2.3	345
70	Regulation of αβ/γĨ´T Cell Development by the Activator Protein 1 Transcription Factor c-Jun. Journal of Immunology, 2007, 178, 5690-5700.	0.4	32
71	ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO Journal, 2007, 26, 2933-2941.	3.5	79
72	ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO Journal, 2007, 26, 4891-4901.	3.5	126

#	Article	IF	CITATIONS
73	Infarct volume after transient middle cerebral artery occlusion (MCAo) can be reduced by attenuation but not by inactivation of c-Jun action. Brain Research, 2007, 1151, 12-19.	1.1	10
74	Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progress in Neurobiology, 2006, 78, 347-363.	2.8	184
75	The Role of c-Jun in Brain Function. , 2006, , 259-283.		0
76	Specific pathophysiological functions of JNK isoforms in the brain. European Journal of Neuroscience, 2005, 21, 363-377.	1.2	203
77	Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature, 2005, 437, 281-285.	13.7	334
78	The Ubiquitin Ligase SCFFbw7 Antagonizes Apoptotic JNK Signaling. Science, 2004, 303, 1374-1378.	6.0	331
79	Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proceedings of the United States of America, 2004, 101, 4198-4203.	3.3	39
80	The AP-1 Transcription Factor c-Jun Is Required for Efficient Axonal Regeneration. Neuron, 2004, 43, 57-67.	3.8	429
81	Physiological and pathological functions of the prion protein homologue Dpl. British Medical Bulletin, 2003, 66, 35-42.	2.7	14
82	Impaired intervertebral disc formation in the absence ofJun. Development (Cambridge), 2003, 130, 103-109.	1.2	75
83	Small is not beautiful: antagonizing functions for the prion protein PrPC and its homologue Dpl. Trends in Neurosciences, 2002, 25, 150-154.	4.2	75
84	JunB can substitute for Jun in mouse development and cell proliferation. Nature Genetics, 2002, 30, 158-166.	9.4	132
85	Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. EMBO Journal, 2002, 21, 1782-1790.	3.5	234
86	Absence of the prion protein homologue Doppel causes male sterility. EMBO Journal, 2002, 21, 3652-3658.	3.5	145
87	Normal neurogenesis and scrapie pathogenesis in neural grafts lacking the prion protein homologue Doppel. EMBO Reports, 2001, 2, 347-352.	2.0	57
88	Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene, 2000, 19, 2657-2663.	2.6	189
89	Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genetics, 1999, 21, 326-329.	9.4	645