

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3140504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MiR-711 and miR-183-3p as Potential Markers for Vital Reaction of Burned Skin. Forensic Sciences Research, 2022, 7, 503-509.	1.6	14
2	Gestational exposure to GenX induces hepatic alterations by the gut-liver axis in maternal mice: A similar mechanism as PFOA. Science of the Total Environment, 2022, 820, 153281.	8.0	18
3	Methamphetamine induces intestinal injury by altering gut microbiota and promoting inflammation in mice. Toxicology and Applied Pharmacology, 2022, 443, 116011.	2.8	14
4	Methamphetamine Disturbs Gut Homeostasis and Reshapes Serum Metabolome, Inducing Neurotoxicity and Abnormal Behaviors in Mice. Frontiers in Microbiology, 2022, 13, 755189.	3.5	10
5	mRNA microarray analysis for the identification of potential biomarkers for vital reaction in burned skin: a preliminary pilot study. Forensic Science, Medicine, and Pathology, 2022, 18, 319-328.	1.4	2
6	Silencing the Tlr4 Gene Alleviates Methamphetamine-Induced Hepatotoxicity by Inhibiting Lipopolysaccharide-Mediated Inflammation in Mice. International Journal of Molecular Sciences, 2022, 23, 6810.	4.1	6
7	Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food and Chemical Toxicology, 2022, 166, 113208.	3.6	15
8	Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food and Chemical Toxicology, 2021, 148, 111946.	3.6	39
9	Surface topography index: a novel deformity severity assessment index for pectus excavatum. Translational Pediatrics, 2021, 10, 2044-2051.	1.2	0
10	PCB52 exposure alters the neurotransmission ligand-receptors in male offspring and contributes to sex-specific neurodevelopmental toxicity. Environmental Pollution, 2020, 264, 114715.	7.5	5
11	Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food and Chemical Toxicology, 2020, 137, 111179.	3.6	42
12	RNA-sequencing analysis of the effect of luteolin on methamphetamine-induced hepatotoxicity in rats: a preliminary study. PeerJ, 2020, 8, e8529.	2.0	16
13	N-acetylcysteine alleviates PCB52-induced hepatotoxicity by repressing oxidative stress and inflammatory responses. PeerJ, 2020, 8, e9720.	2.0	7
14	Fatal spontaneous rupture of common iliac artery associated with fibromuscular dysplasia. Forensic Sciences Research, 2019, 4, 358-363.	1.6	2
15	ATF3 mRNA, but not BTG2, as a possible marker for vital reaction of skin contusion. Forensic Science International, 2019, 303, 109937.	2.2	7
16	Simultaneous determination of metabolic and elemental markers in methamphetamine-induced hepatic injury to rats using LC-MS/MS and ICP-MS. Analytical and Bioanalytical Chemistry, 2019, 411, 3361-3372.	3.7	25
17	Involvement of C/EBPβ-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicology Letters, 2019, 312, 11-21.	0.8	26
18	PCB52 induces hepatotoxicity in male offspring through aggravating loss of clearance capacity and activating the apoptosis: Sex-biased effects on rats. Chemosphere, 2019, 227, 389-400.	8.2	16

QI WANG

#	Article	IF	CITATIONS
19	Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochemical and Biophysical Research Communications, 2019, 509, 395-401.	2.1	50
20	PCB28 and PCB52 induce hepatotoxicity by impairing the autophagic flux and stimulating cell apoptosis in vitro. Toxicology Letters, 2018, 289, 28-41.	0.8	12
21	Diagnostic role of serum tryptase in anaphylactic deaths in forensic medicine: a systematic review and meta-analysis. Forensic Science, Medicine, and Pathology, 2018, 14, 209-215.	1.4	24
22	CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions. Forensic Science, Medicine, and Pathology, 2018, 14, 174-179.	1.4	17
23	Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Toxicology Letters, 2018, 289, 107-113.	0.8	30
24	Cannabinoid 2 receptor attenuates inflammation during skin wound healing by inhibiting M1 macrophages rather than activating M2 macrophages. Journal of Inflammation, 2018, 15, 25.	3.4	62
25	METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum. Frontiers in Neuroscience, 2018, 12, 802.	2.8	18
26	Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβâ€related signaling pathway. FASEB Journal, 2018, 32, 6737-6759.	0.5	32
27	IL-6 and IL-20 as potential markers for vitality of skin contusion. Journal of Clinical Forensic and Legal Medicine, 2018, 59, 8-12.	1.0	11
28	RNA-seq profiling reveals differentially expressed genes as potential markers for vital reaction in skin contusion: a pilot study. Forensic Sciences Research, 2018, 3, 153-160.	1.6	26
29	Postmortem Serum Tryptase Levels with Special Regard to Acute Cardiac Deaths. Journal of Forensic Sciences, 2017, 62, 1336-1338.	1.6	26
30	Methamphetamine induces hepatotoxicity via inhibiting cell division, arresting cell cycle and activating apoptosis: InÂvivo and inÂvitro studies. Food and Chemical Toxicology, 2017, 105, 61-72.	3.6	36
31	Increased cerebral expressions of MMPs, CLDN5, OCLN, ZO1 and AQPs are associated with brain edema following fatal heat stroke. Scientific Reports, 2017, 7, 1691.	3.3	15
32	Molecular pathology of cerebral TNF-α, IL-1β, iNOS and Nrf2 in forensic autopsy cases with special regard to deaths due to environmental hazards and intoxication. Forensic Science, Medicine, and Pathology, 2017, 13, 409-416.	1.4	6
33	Molecular Pathology of Pulmonary Edema in Forensic Autopsy Cases with Special Regard to Fatal Methamphetamine Intoxication. Journal of Forensic Sciences, 2016, 61, 1531-1537.	1.6	8
34	Decreased mRNA levels of cardiac Cx43 and ZO1 in sudden cardiac death related to coronary atherosclerosis: a pilot study. International Journal of Legal Medicine, 2016, 130, 915-922.	2.2	11
35	Infiltration and Fat Droplet Phagocytosis by Macrophages in the Alveoli may be the Most Likely Characteristics of Fat Embolism. Journal of Forensic Science and Medicine, 2016, 2, 171.	0.2	0
36	Caspase-11 Plays an Essential Role in Methamphetamine-Induced Dopaminergic Neuron Apoptosis. Toxicological Sciences, 2015, 145, 68-79.	3.1	50

QI WANG

#	Article	IF	CITATIONS
37	Postmortem urinary catecholamine levels with regard to the cause of death. Legal Medicine, 2014, 16, 344-349.	1.3	20
38	Molecular pathology of brain matrix metalloproteases, claudin5, and aquaporins in forensic autopsy cases with special regard to methamphetamine intoxication. International Journal of Legal Medicine, 2014, 128, 469-474.	2.2	26
39	Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection. International Journal of Legal Medicine, 2013, 127, 881-889.	2.2	21
40	Postmortem serum levels of amylase and gamma glutamyl transferase (GGT) as markers of systemic tissue damage in forensic autopsy. Legal Medicine, 2013, 15, 79-84.	1.3	11
41	Postmortem catecholamine levels in pericardial and cerebrospinal fluids with regard to the cause of death in medicolegal autopsy. Forensic Science International, 2013, 228, 52-60.	2.2	33
42	Molecular pathology of pulmonary edema in forensic autopsy cases with special regard to fatal hyperthermia and hypothermia. Forensic Science International, 2013, 228, 137-141.	2.2	23
43	Molecular pathology of pulmonary edema after injury in forensic autopsy cases. International Journal of Legal Medicine, 2012, 126, 875-882.	2.2	22
44	Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper. International Journal of Legal Medicine, 2012, 126, 943-952.	2.2	123
45	Evaluation of human brain damage in fatalities due to extreme environmental temperature by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP), S100β and single-stranded DNA (ssDNA) immunoreactivities. Forensic Science International, 2012, 219, 259-264.	2.2	24
46	Intrapulmonary aquaporin-5 expression as a possible biomarker for discriminating smothering and choking from sudden cardiac death: A pilot study. Forensic Science International, 2012, 220, 154-157.	2.2	25
47	Quantitative immunohistochemical analysis of human brain basic fibroblast growth factor, glial fibrillary acidic protein and single-stranded DNA expressions following traumatic brain injury. Forensic Science International, 2012, 221, 142-151.	2.2	11
48	Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Legal Medicine, 2011, 13, 226-232.	1.3	66
49	Evaluation of human brain damage in fire fatality by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP) and single-stranded DNA (ssDNA) immunoreactivities. Forensic Science International, 2011, 211, 19-26.	2.2	11
50	Postmortem serotonin levels in cerebrospinal and pericardial fluids with regard to the cause of death in medicolegal autopsy. Legal Medicine, 2011, 13, 75-78.	1.3	19
51	Fatal facial–intracranial impalement injury in an accidental fall from a height: An autopsy case report with a review of the literature. Forensic Science International, 2010, 200, e21-e24.	2.2	8
52	Postmortem serum levels of pulmonary surfactant-associated proteins A and D with regard to the cause of death in medicolegal autopsy. Legal Medicine, 2009, 11, S301-S303.	1.3	6
53	Evaluation of postmortem calcium and magnesium levels in the pericardial fluid with regard to the cause of death in medicolegal autopsy. Legal Medicine, 2009, 11, S276-S278.	1.3	24
54	Immunohistochemical distribution of basic fibroblast growth factor (bFGF) in medicolegal autopsy. Legal Medicine, 2009, 11, S161-S164.	1.3	4

QI WANG

#	Article	IF	CITATIONS
55	Immunohistochemistry of von Willebrand factor in the lungs with regard to the cause of death in forensic autopsy. Legal Medicine, 2009, 11, S294-S296.	1.3	7
56	Evaluation of pulmonary GLUT1 and VEGF mRNA levels in relation to lung weight in medicolegal autopsy cases. Legal Medicine, 2009, 11, S290-S293.	1.3	10
57	Postmortem mRNA quantification for investigation of infantile death: A comparison with adult cases. Legal Medicine, 2009, 11, S286-S289.	1.3	7
58	Evaluation of postmortem S100B levels in the cerebrospinal fluid with regard to the cause of death in medicolegal autopsy. Legal Medicine, 2009, 11, S273-S275.	1.3	21
59	Postmortem lung weight with regard to survival time. Legal Medicine, 2009, 11, S238-S240.	1.3	14
60	Immunohistochemistry of Neuronal Apoptosis in Fatal Traumas: The Contribution of Forensic Molecular Pathology in Medical Science. , 0, , .		1