
Lucie CahlÃ-kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3140363/publications.pdf Version: 2024-02-01

LUCIE CAHLÃKOVÃ:

#	Article	IF	CITATIONS
1	Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease. Phytochemistry, 2022, 194, 113017.	2.9	7
2	Semisynthetic derivatives of haemanthamine and their in vitro antiproliferative activity evaluation against a panel of human cell lines. Arabian Journal of Chemistry, 2022, 15, 103746.	4.9	3
3	Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents. Biomolecules, 2022, 12, 844.	4.0	4
4	Can Isoquinoline Alkaloids Affect Platelet Aggregation in Whole Human Blood?. Toxins, 2022, 14, 491.	3.4	1
5	The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochemistry Reviews, 2021, 20, 303-323.	6.5	26
6	Amaryllidaceae alkaloids from Hippeastrum X Hybridum CV. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer´s disease. South African Journal of Botany, 2021, 136, 137-146.	2.5	11
7	Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer's disease: Isolation, structural elucidation and biological activity. Bioorganic Chemistry, 2021, 107, 104567.	4.1	20
8	Structure Elucidation and Cholinesterase Inhibition Activity of Two New Minor Amaryllidaceae Alkaloids. Molecules, 2021, 26, 1279.	3.8	7
9	Pancracine, a Montanine-Type Amaryllidaceae Alkaloid, Inhibits Proliferation of A549 Lung Adenocarcinoma Cells and Induces Apoptotic Cell Death in MOLT-4 Leukemic Cells. International Journal of Molecular Sciences, 2021, 22, 7014.	4.1	6
10	Recent Progress on Biological Activity of Amaryllidaceae and Further Isoquinoline Alkaloids in Connection with Alzheimer's Disease. Molecules, 2021, 26, 5240.	3.8	12
11	Amaryllidaceae Alkaloids of Norbelladine-Type as Inspiration for Development of Highly Selective Butyrylcholinesterase Inhibitors: Synthesis, Biological Activity Evaluation, and Docking Studies. International Journal of Molecular Sciences, 2021, 22, 8308.	4.1	5
12	Derivatives of montanine-type alkaloids and their implication for the treatment of Alzheimer's disease: Synthesis, biological activity and in silico study. Bioorganic and Medicinal Chemistry Letters, 2021, 51, 128374.	2.2	4
13	Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents. Molecules, 2021, 26, 6023.	3.8	2
14	Pharmacognosy and Its Role in the System of Profile Disciplines in Pharmacy. Natural Product Communications, 2020, 15, 1934578X2094545.	0.5	2
15	Chemistry and Biological Activity of Alkaloids from the Genus Lycoris (Amaryllidaceae). Molecules, 2020, 25, 4797.	3.8	29
16	Functionalized aromatic esters of the Amaryllidaceae alkaloid haemanthamine and their in vitro and in silico biological activity connected to Alzheimer's disease. Bioorganic Chemistry, 2020, 100, 103928.	4.1	9
17	Chemical and Biological Aspects of Montanine-Type Alkaloids Isolated from Plants of the Amaryllidaceae Family. Molecules, 2020, 25, 2337.	3.8	17
18	Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules, 2020, 10, 800.	4.0	21

Lucie CahlÃκονÃi

#	Article	IF	CITATIONS
19	Bersavine: A Novel Bisbenzylisoquinoline Alkaloid with Cytotoxic, Antiproliferative and Apoptosis-Inducing Effects on Human Leukemic Cells. Molecules, 2020, 25, 964.	3.8	7
20	Amaryllidaceae Alkaloids of Different Structural Types from Narcissus L. cv. Professor Einstein and Their Cytotoxic Activity. Plants, 2020, 9, 137.	3.5	16
21	Aromatic Esters of the Crinane Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Butyrylcholinesterase. Journal of Natural Products, 2020, 83, 1359-1367.	3.0	19
22	Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. Phytochemistry, 2019, 165, 112055.	2.9	43
23	Isoquinoline Alkaloids from <i>Berberis vulgaris</i> as Potential Lead Compounds for the Treatment of Alzheimer's Disease. Journal of Natural Products, 2019, 82, 239-248.	3.0	55
24	In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Molecules, 2019, 24, 1340.	3.8	23
25	Derivatives of the β-Crinane Amaryllidaceae Alkaloid Haemanthamine as Multi-Target Directed Ligands for Alzheimer's Disease. Molecules, 2019, 24, 1307.	3.8	22
26	The Genus Nerine Herb. (Amaryllidaceae): Ethnobotany, Phytochemistry, and Biological Activity. Molecules, 2019, 24, 4238.	3.8	19
27	Alkaloid Profiling of Hippeastrum Cultivars by GC-MS, Isolation of Amaryllidaceae Alkaloids and Evaluation of Their Cytotoxicity. Records of Natural Products, 2019, 14, 154-159.	1.3	11
28	Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells. Scientific Reports, 2018, 8, 4829.	3.3	26
29	Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Archives of Pharmacal Research, 2018, 41, 208-218.	6.3	35
30	Daffodils as Potential Crops of Biologically-active Compounds: Assessment of 40 Ornamental Taxa for their Alkaloid Profile and Cholinesterases Inhibition Activity. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3
31	Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Molecules, 2018, 23, 719.	3.8	24
32	Effect of aqueous extract and anthocyanins of calyces of <i>Hibiscus sabdariffa</i> (Malvaceae) in rats with adenine-induced chronic kidney disease. Journal of Pharmacy and Pharmacology, 2017, 69, 1219-1229.	2.4	33
33	Haemanthamine alters sodium butyrate-induced histone acetylation, p21 WAF1/Cip1 expression, Chk1 and Chk2 activation and leads to increased growth inhibition and death in A2780 ovarian cancer cells. Phytomedicine, 2017, 35, 1-10.	5.3	9
34	Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, 2017, 275, 121-132.	4.0	30
35	Preparation and Validated Analysis of Anthocyanin Concentrate from the Calyces of <i>Hibiscus sabdariffa</i> . Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	5
36	Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae). Molecules, 2017, 22, 1181.	3.8	19

Lucie CahlÃkovÃi

#	Article	IF	CITATIONS
37	AKR1C3 Inhibitory Potency of Naturally-occurring Amaryllidaceae Alkaloids of Different Structural Types. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	5
38	Chelidonine and Homochelidonine Induce Cell Death through Cell Cycle Checkpoints and MAP Kinase Pathways. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
39	Preparation and Validated Analysis of Anthocyanin Concentrate from the Calyces of Hibiscus sabdariffa. Natural Product Communications, 2017, 12, 43-45.	0.5	4
40	Cytotoxicity of Naturally Occurring Isoquinoline Alkaloids of Different Structural Types. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	5
41	The Biological Activity of Alkaloids from the Amaryllidaceae: From Cholinesterases Inhibition to Anticancer Activity. Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	18
42	Isoquinoline Alkaloids from <i>Fumaria officinalis</i> L. and Their Biological Activities Related to <i>Alzheimer</i> 's Disease. Chemistry and Biodiversity, 2016, 13, 91-99.	2.1	30
43	Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Advances, 2016, 6, 80114-80120.	3.6	23
44	LCâ€MS/MS method for the determination of haemanthamine in rat plasma, bile and urine and its application to a pilot pharmacokinetic study. Biomedical Chromatography, 2016, 30, 1083-1091.	1.7	11
45	Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from Corydalis cava (Fumariaceae) as Alzheimer's disease targets. Fìtoterapìâ, 2016, 109, 241-247.	2.2	33
46	Comparative cytotoxicity of chelidonine and homochelidonine, the dimethoxy analogues isolated from Chelidonium majus L. (Papaveraceae), against human leukemic and lung carcinoma cells. Phytomedicine, 2016, 23, 253-266.	5.3	30
47	Multifunctional activity of some isoquinoline alkaloids from Corydalis cava tubers on Alzheimer's disease targets. Planta Medica, 2016, 81, S1-S381.	1.3	0
48	Cytotoxic potential of naturally occurring isoquinoline alkaloids possessing different structural types. Planta Medica, 2016, 81, S1-S381.	1.3	0
49	Alkaloids of Narcissus poeticus cv. Pink Parasol and their biological activity. Planta Medica, 2016, 81, S1-S381.	1.3	Ο
50	Cytotoxicity of Naturally Occurring Isoquinoline Alkaloids of Different Structural Types. Natural Product Communications, 2016, 11, 753-6.	0.5	6
51	The Biological Activity of Alkaloids from the Amaryllidaceae: From Cholinesterases Inhibition to Anticancer Activity. Natural Product Communications, 2016, 11, 1587-1594.	0.5	17
52	Anthocyanins of Hibiscus sabdiffera Calyces from Sudan. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	5
53	Antifungal and Antibacterial Activity of Extracts and Alkaloids of Selected Amaryllidaceae Species. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	15
54	(+)-Chenabinol (Revised NMR Data) and Two New Alkaloids from <i>Berberis vulgaris</i> and their Biological Activity. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	1

Lucie CahlÃκονÃi

#	Article	IF	CITATIONS
55	Alkaloids from Peumus boldus and their Acetylcholinesterase, Butyrylcholinesterase and Prolyl Oligopeptidase Inhibition Activity. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	6
56	In Vitro Inhibitory Effects of 8- <i>O</i> -Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015, 78, 1189-1192.	3.0	24
57	Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fìtoterapìâ, 2015, 103, 192-196.	2.2	23
58	Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. Journal of Natural Products, 2015, 78, 2666-2674.	3.0	31
59	Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochemistry Letters, 2015, 13, 394-398.	1.2	34
60	Alkaloids from Berberis vulgaris and their biological activity connected to Alzheimer's disease. Planta Medica, 2015, 81, .	1.3	0
61	Anthocyanins of Hibiscus sabdiffera calyces from Sudan. Natural Product Communications, 2015, 10, 77-9.	0.5	4
62	Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Natural Product Communications, 2015, 10, 577-80.	0.5	9
63	Antifungal and Antibacterial Activity of Extracts and Alkaloids of Selected Amaryllidaceae Species. Natural Product Communications, 2015, 10, 1537-40.	0.5	16
64	(+)-Chenabinol (Revised NMR Data) and Two New Alkaloids from Berberis vulgaris and their Biological Activity. Natural Product Communications, 2015, 10, 1695-7.	0.5	3
65	Antimicrobial Activity of Extracts and Isoquinoline Alkaloids of Selected Papaveraceae Plants. Natural Product Communications, 2014, 9, 1934578X1400901.	0.5	5
66	Chemical Composition of Bioactive Alkaloid Extracts from Some Narcissus Species and Varieties and their Biological Activity. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	5
67	Revised NMR Data for 9-O-Demethylgalanthine: An Alkaloid from Zephyranthes robusta (Amaryllidaceae) and its Biological Activity. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	6
68	Evaluation of the antioxidant activity of several naturally occurring coumarins and their synthesized analogues by "ferric reducing antioxidant power―assay. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 49-54.	5.2	13
69	Tannins and their Influence on Health. , 2014, , 159-208.		25
70	Natural Products as Potential Human Ether-A-Go-Go-Related Gene Channel Inhibitors – Screening of Plant-Derived Alkaloids. Planta Medica, 2014, 80, 740-746.	1.3	18
71	The effect of Amaryllidaceae alkaloids haemanthamine and haemanthidine on cell cycle progression and apoptosis in p53-negative human leukemic Jurkat cells. Phytomedicine, 2014, 21, 479-490.	5.3	59
72	Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 250-258.	2.5	27

Lucie CahlÃκονÃi

#	Article	IF	CITATIONS
73	Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. Studies in Natural Products Chemistry, 2014, 42, 153-194.	1.8	13
74	Revised NMR data for 9-O-demethylgalanthine: an alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity. Natural Product Communications, 2014, 9, 787-8.	0.5	15
75	Chemical composition of bioactive alkaloid extracts from some Narcissus species and varieties and their biological activity. Natural Product Communications, 2014, 9, 1151-5.	0.5	9
76	Alkaloids from <i>Zephyranthes robusta</i> <scp>Baker</scp> and Their Acetylcholinesteraseâ€and Butyrylcholinesteraseâ€Inhibitory Activity. Chemistry and Biodiversity, 2013, 10, 1120-1127.	2.1	40
77	Alkaloids from Chlidanthus fragrans and their Acetylcholinesterase, Butyrylcholinesterase and Prolyl Oligopeptidase Activities. Natural Product Communications, 2013, 8, 1934578X1300801.	0.5	14
78	Berbanine: A New Isoquinoline-Isoquinolone Alkaloid from Berberis Vulgaris (Berberidaceae). Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2
79	Isolation and Cholinesterase Inhibitory Activity of Narcissus Extracts and Amaryllidaceae Alkaloid. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	4
80	Berbanine: a new isoquinoline-isoquinolone alkaloid from Berberis vulgaris (Berberidaceae). Natural Product Communications, 2013, 8, 441-2.	0.5	8
81	Alkaloids from Chlidanthus fragrans and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase activities. Natural Product Communications, 2013, 8, 1541-4.	0.5	20
82	Identification of Pavinane Alkaloids in the Genera Argemone and Eschscholzia by GC-MS. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	4
83	Alkaloids from Some Amaryllidaceae Species and Their Cholinesterase Activity. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	7
84	Corylucinine, a new Alkaloid from <i>Corydalis cava</i> (Fumariaceae), and its Cholinesterase Activity. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	8
85	Corylucinine, a new alkaloid from Corydalis cava (Fumariaceae), and its cholinesterase activity. Natural Product Communications, 2012, 7, 859-60.	0.5	4
86	Identification of pavinane alkaloids in the genera Argemone and Eschscholzia by GC-MS. Natural Product Communications, 2012, 7, 1279-81.	0.5	7
87	Analysis of Amaryllidaceae Alkaloids from Chlidanthus Fragrans by GC-MS and their Cholinesterase Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	0
88	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from Corydalis Cava (Fumariaceae). Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	15
89	Isolation and Cholinesterase Activity of Amaryllidaceae Alkaloids from Nerine bowdenii. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	3
90	GC/MS Analysis of Three Amaryllidaceae Species and Their Cholinesterase Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	6

Lucie CahlÃkovÃi

#	Article	IF	CITATIONS
91	Analysis of Amaryllidaceae alkaloids from Zephyranthes grandiflora by GC/MS and their cholinesterase activity. Revista Brasileira De Farmacognosia, 2011, 21, 575-580.	1.4	18
92	Analysis of Amaryllidaceae alkaloids from Chlidanthus fragrans by GC-MS and their cholinesterase activity. Natural Product Communications, 2011, 6, 603-6.	0.5	7
93	Ecdysterone and its activity on some degenerative diseases. Natural Product Communications, 2011, 6, 707-18.	0.5	7
94	GC/MS analysis of three Amaryllidaceae species and their cholinesterase activity. Natural Product Communications, 2011, 6, 1255-8.	0.5	8
95	Isolation and cholinesterase activity of Amaryllidaceae alkaloids from Nerine bowdenii. Natural Product Communications, 2011, 6, 1827-30.	0.5	10
96	Analysis of Amaryllidaceae Alkaloids from <i>Zephyranthes Robusta</i> by GC-MS and Their Cholinesterase Activity. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	8
97	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Eschscholzia californica</i> (Papaveraceae). Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	7
98	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Chelidonium Majus</i> (Papaveraceae). Natural Product Communications, 2010, 5, 1934578X1000501.	0.5	13
99	Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae). Natural Product Communications, 2010, 5, 1035-8.	0.5	23
100	Analysis of Amaryllidaceae alkaloids from Zephyranthes robusta by GC-MS and their cholinesterase activity. Natural Product Communications, 2010, 5, 1201-4.	0.5	4
101	Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae). Natural Product Communications, 2010, 5, 1751-4.	0.5	22
102	Age-Dependent Changes in the Chemistry of Exocrine Glands of Bombus terrestris Queens. Journal of Chemical Ecology, 2008, 34, 458-466.	1.8	7
103	Age-dependent changes in structure and function of the male labial gland in Bombus terrestris. Journal of Insect Physiology, 2008, 54, 204-214.	2.0	28
104	Cephalic secretions of the bumblebee subgenus Sibiricobombus Vogt suggest Bombus niveatus Kriechbaumer and Bombus vorticosus Gerstaecker are conspecific (Hymenoptera, Apidae, Bombus). Apidologie, 2005, 36, 571-584.	2.0	38
105	Exocrine Gland Secretions of Virgin Queens of Five Bumblebee Species (Hymenoptera: Apidae, Bombini). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 582-589.	1.4	14