Eric E Roden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3140156/publications.pdf Version: 2024-02-01

FRIC F RODEN

#	Article	IF	CITATIONS
1	Microbial chemolithotrophic oxidation of pyrite in a subsurface shale weathering environment: Geologic considerations and potential mechanisms. Geobiology, 2022, 20, 271-291.	2.4	4
2	Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Astrobiology, 2021, 21, 83-102.	3.0	0
3	Precipitation of low-temperature disordered dolomite induced by extracellular polymeric substances of methanogenic Archaea <i>Methanosarcina barkeri</i> : Implications for sedimentary dolomite formation. American Mineralogist, 2021, 106, 69-81.	1.9	18
4	The Weathering Microbiome of an Outcropping Granodiorite. Frontiers in Microbiology, 2020, 11, 601907.	3.5	6
5	Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26394-26401.	7.1	29
6	Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. Environmental Science & Technology, 2018, 52, 5691-5699.	10.0	116
7	Stable Isotope Probing for Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Applied and Environmental Microbiology, 2018, 84, .	3.1	46
8	Stability of Ferrihydrite–Humic Acid Coprecipitates under Iron-Reducing Conditions. Environmental Science & Technology, 2018, 52, 13174-13183.	10.0	31
9	Investigating the Composition and Metabolic Potential of Microbial Communities in Chocolate Pots Hot Springs. Frontiers in Microbiology, 2018, 9, 2075.	3.5	19
10	Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction. Chemical Geology, 2017, 464, 118-126.	3.3	57
11	Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
12	Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. Geochimica Et Cosmochimica Acta, 2017, 212, 221-233.	3.9	107
13	Comparative Genomic Analysis of Neutrophilic Iron(II) Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer. Frontiers in Microbiology, 2017, 8, 1584.	3.5	121
14	Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling. Environmental Science & Technology, 2016, 50, 3580-3588.	10.0	101
15	Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph. Applied and Environmental Microbiology, 2016, 82, 1486-1495.	3.1	62
16	Microbial mineral colonization across a subsurface redox transition zone. Frontiers in Microbiology, 2015, 6, 858.	3.5	20
17	The catalytic effect of bound extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation: Implications for the "dolomite problem". American Mineralogist, 2015, 100, 483-494.	1.9	60
18	The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep. Frontiers in Microbiology, 2012, 3, 172.	3.5	90

Eric E Roden

#	Article	IF	CITATIONS
19	Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience, 2010, 3, 417-421.	12.9	407
20	A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. American Mineralogist, 2010, 95, 1650-1656.	1.9	122
21	Microbiological Controls on Geochemical Kinetics 1: Fundamentals and Case Study on Microbial Fe(III) Oxide Reduction. , 2008, , 335-415.		24
22	Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochimica Et Cosmochimica Acta, 2005, 69, 963-993.	3.9	203
23	Diversion of Electron Flow from Methanogenesis to Crystalline Fe(III) Oxide Reduction in Carbon-Limited Cultures of Wetland Sediment Microorganisms. Applied and Environmental Microbiology, 2003, 69, 5702-5706.	3.1	49
24	Influence of Biogenic Fe(II) on Bacterial Crystalline Fe(III) Oxide Reduction. Geomicrobiology Journal, 2002, 19, 209-251.	2.0	220
25	Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochimica Et Cosmochimica Acta, 2002, 66, 2823-2839.	3.9	71
26	Recovery of Humic-Reducing Bacteria from a Diversity of Environments. Applied and Environmental Microbiology, 1998, 64, 1504-1509.	3.1	265