
Sara Ghorashian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3140092/publications.pdf Version: 2024-02-01

SADA CHODASHIAN

#	Article	IF	CITATIONS
1	Defining the impact of SARS-COV-2 on delivery of CAR T-cell therapy in Europe: a retrospective survey from the CTIWP of the EBMT. Bone Marrow Transplantation, 2022, 57, 299-301.	2.4	8
2	Rare Sequences Make Sense of CAR T-cell Therapy Outcomes. Blood Cancer Discovery, 2022, 3, 2-4.	5.0	1
3	CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia, 2022, 36, 1525-1532.	7.2	27
4	Clinically Applicable Assessment of Tisagenlecleucel CAR T Cell Treatment by Digital Droplet PCR for Copy Number Variant Assessment. International Journal of Molecular Sciences, 2022, 23, 7573.	4.1	2
5	The role of immunotherapy in relapse/refractory precursorâ€B acute lymphoblastic leukaemia: realâ€life UK/Ireland experience in children and young adults. British Journal of Haematology, 2021, 192, e42-e44.	2.5	0
6	Activity of blinatumomab in lymphoblastic leukemia with impaired T-cell immunity due to congenital immunodeficiency. Blood Advances, 2021, 5, 2153-2155.	5.2	8
7	Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nature Cancer, 2021, 2, 629-642.	13.2	59
8	Graftâ€ <i>versus</i> â€host disease induced by tisagenlecleucel in patients after allogeneic stem cell transplantation. British Journal of Haematology, 2021, 195, 805-811.	2.5	5
9	CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nature Medicine, 2021, 27, 1797-1805.	30.7	125
10	A High Sensitivity aCD22 CAR Combined with aCD19 CAR to Generate Dual Targeting CAR T Cells for the Treatment of r/r B-ALL. Blood, 2021, 138, 1710-1710.	1.4	0
11	Outcomes of Children and Young Adults with Acute Lymphoblastic Leukaemia Administered Inotuzumab Pre CAR-T Therapy. Blood, 2021, 138, 1743-1743.	1.4	4
12	Siglec-6 CAR T: magic bullet for a moving target. Blood, 2021, 138, 1786-1787.	1.4	1
13	CD1a is rarely expressed in pediatric or adult relapsed/refractory T-ALL: implications for immunotherapy. Blood Advances, 2020, 4, 4665-4668.	5.2	11
14	Remdesivir during induction chemotherapy for newly diagnosed paediatric acute lymphoblastic leukaemia with concomitant SARS oVâ€2 infection. British Journal of Haematology, 2020, 190, e274-e276.	2.5	20
15	Blinatumomab for infant acute lymphoblastic leukemia. Blood, 2020, 135, 1501-1504.	1.4	43
16	Nanobody Based Tri-Specific Chimeric Antigen Receptor to Treat Acute Myeloid Leukaemia. Blood, 2020, 136, 10-11.	1.4	5
17	Safety and Efficacy of CD19 CAR T-Cells for Pediatric Relapsed Acute Lymphoblastic Leukemia with Active CNS Involvement. Blood, 2020, 136, 1-1.	1.4	2
18	The Enhanced Functionality of Low-Affinity CD19 CAR T Cells Is Associated with Activation Priming and Polyfunctional Cytokine Phenotype. Blood, 2020, 136, 52-53.	1.4	3

SARA GHORASHIAN

#	Article	IF	CITATIONS
19	Intention to Treat Analysis of Real-World Outcomes Following Tisgenlecleucel Therapy for Pediatric and Young Adult ALL through a National Access Programme. Blood, 2020, 136, 18-19.	1.4	2
20	Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nature Medicine, 2019, 25, 1408-1414.	30.7	394
21	Clonal Dynamics of Early Responder and Long-Term Surviving CAR-T Cells in Humans. Blood, 2019, 134, 52-52.	1.4	2
22	A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 2018, 53, 164-181.	6.6	262
23	Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology, 2018, 66, 5-16.	0.4	5
24	Redirection to the bone marrow improves T cell persistence and antitumor functions. Journal of Clinical Investigation, 2018, 128, 2010-2024.	8.2	39
25	Excellent Response to Blinatumomab in Children and Young Adults with Refractory B Lineage Acute Lymphoblastic Leukaemia for Persistent MRD or after Debulking Chemotherapy for Higher Disease Burden. Blood, 2018, 132, 5201-5201.	1.4	0
26	Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine, 2017, 9, .	12.4	707
27	A Novel Low Affinity CD19CAR Results in Durable Disease Remissions and Prolonged CAR T Cell Persistence without Severe CRS or Neurotoxicity in Patients with Paediatric ALL. Blood, 2017, 130, 806-806.	1.4	8
28	Expression of a dominant T-cell receptor can reduce toxicity and enhance tumor protection of allogeneic T-cell therapy. Haematologica, 2016, 101, 482-490.	3.5	6
29	CD8 T Cell Tolerance to a Tumor-Associated Self-Antigen Is Reversed by CD4 T Cells Engineered To Express the Same T Cell Receptor. Journal of Immunology, 2015, 194, 1080-1089.	0.8	19
30	OX40- and CD27-Mediated Costimulation Synergizes with Anti–PD-L1 Blockade by Forcing Exhausted CD8+ T Cells To Exit Quiescence. Journal of Immunology, 2015, 194, 125-133.	0.8	65
31	T cell gene-engineering to enhance GVT and suppress GVHD. Best Practice and Research in Clinical Haematology, 2011, 24, 421-433.	1.7	4
32	Nonhematopoietic antigen blocks memory programming of alloreactive CD8+ T cells and drives their eventual exhaustion in mouse models of bone marrow transplantation. Journal of Clinical Investigation, 2010, 120, 3855-3868.	8.2	52