Francois Franceschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical management of severe infections caused by carbapenem-resistant gram-negative bacteria: a worldwide cross-sectional survey addressing the use of antibiotic combinations. Clinical Microbiology and Infection, 2022, 28, 66-72.	6.0	10
2	Flomoxef and fosfomycin in combination for the treatment of neonatal sepsis in the setting of highly prevalent antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 2022, 77, 1334-1343.	3.0	8
3	Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. International Journal of Antimicrobial Agents, 2021, 57, 106344.	2.5	54
4	Pharmacodynamic Evaluation of Dosing, Bacterial Kill, and Resistance Suppression for Zoliflodacin Against Neisseria gonorrhoeae in a Dynamic Hollow Fiber Infection Model. Frontiers in Pharmacology, 2021, 12, 682135.	3.5	23
5	Amikacin Combined with Fosfomycin for Treatment of Neonatal Sepsis in the Setting of Highly Prevalent Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy, 2021, 65, e0029321.	3.2	12
6	The role of combination therapy in the treatment of severe infections caused by carbapenem resistant gram-negatives: a systematic review of clinical studies. BMC Infectious Diseases, 2021, 21, 545.	2.9	19
7	Potential Antibiotics for the Treatment of Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Paediatric Drugs, 2021, 23, 465-484.	3.1	18
8	In vivo studies on antibiotic combination for the treatment of carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis protocolln vivo studies on antibiotic combination for the treatment of carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis protocol. BMI Open Science. 2020, 44, e100055.	1.7	2
9	Pharmacokinetic/pharmacodynamic considerations for new and current therapeutic drugs for uncomplicated gonorrhoea—challenges and opportunities. Clinical Microbiology and Infection, 2020, 26, 1630-1635.	6.0	16
10	SHAPE footprinting as complementary approach to structureâ€based design of ribosomal antibiotics: Phenicol antibiotics prevent A2451 2′OH acylation. FASEB Journal, 2009, 23, 496.4.	0.5	0
11	Rï‡-01, a New Family of Oxazolidinones That Overcome Ribosome-Based Linezolid Resistance. Antimicrobial Agents and Chemotherapy, 2008, 52, 3550-3557.	3.2	73
12	In Vitro Activities of the Rx-01 Oxazolidinones against Hospital and Community Pathogens. Antimicrobial Agents and Chemotherapy, 2008, 52, 1653-1662.	3.2	72
13	Back to the future: the ribosome as an antibiotic target. Future Microbiology, 2007, 2, 571-574.	2.0	5
14	Structure-based drug design meets the ribosome. Biochemical Pharmacology, 2006, 71, 1016-1025.	4.4	72
15	Structural Basis for the Antibiotic Activity of Ketolides and Azalides. Structure, 2003, 11, 329-338.	3.3	225
16	Structural Basis of the Ribosomal Machinery for Peptide Bond Formation, Translocation, and Nascent Chain Progression. Molecular Cell, 2003, 11, 91-102.	9.7	285
17	High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium. Cell, 2001, 107, 679-688.	28.9	853
18	Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature, 2001, 413, 814-821.	27.8	943

#	Article	IF	CITATIONS
19	Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Ã Resolution. Cell, 2000, 102, 615-623.	28.9	925