List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Graphene Aerogel with High Electrical Conductivity. Journal of the American Chemical Society, 2010, 132, 14067-14069.	6.6	1,101
2	Tunable nanowire nonlinear optical probe. Nature, 2007, 447, 1098-1101.	13.7	544
3	Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Materials, 2006, 5, 97-101.	13.3	399
4	Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections. Nano Letters, 2003, 3, 1063-1066.	4.5	362
5	Self-Organized GaN Quantum Wire UV Lasers. Journal of Physical Chemistry B, 2003, 107, 8721-8725.	1.2	281
6	Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nature Photonics, 2008, 2, 86-89.	15.6	246
7	Mechanically robust 3D graphene macroassembly with high surface area. Chemical Communications, 2012, 48, 8428.	2.2	227
8	High Surface Area, sp ² -Cross-Linked Three-Dimensional Graphene Monoliths. Journal of Physical Chemistry Letters, 2011, 2, 921-925.	2.1	212
9	NanoPen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles. Nano Letters, 2009, 9, 2921-2925.	4.5	93
10	Laser refrigeration of hydrothermal nanocrystals in physiological media. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15024-15029.	3.3	82
11	Ultrafast sol–gel synthesis of graphene aerogel materials. Carbon, 2015, 95, 616-624.	5.4	76
12	Polarized Raman Confocal Microscopy of Single Gallium Nitride Nanowires. Journal of the American Chemical Society, 2005, 127, 17146-17147.	6.6	70
13	Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. Applied Physics Letters, 2009, 95, 113104.	1.5	52
14	Synthesis and characterization of a nanocrystalline diamond aerogel. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8550-8553.	3.3	52
15	Laser Refrigeration of Ytterbiumâ€Doped Sodium–Yttrium–Fluoride Nanowires. Advanced Materials, 2016, 28, 8658-8662.	11.1	48
16	Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes. Microsystems and Nanoengineering, 2017, 3, 17032.	3.4	48
17	Nanoscale materials for hyperthermal theranostics. Nanoscale, 2015, 7, 7115-7126.	2.8	39
18	Photothermal Heating of Nanowires. Journal of Physical Chemistry C, 2014, 118, 1407-1416.	1.5	32

#	Article	IF	CITATIONS
19	Nanowire Heating by Optical Electromagnetic Irradiation. Langmuir, 2012, 28, 16177-16185.	1.6	28
20	A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires. Chemistry of Materials, 2020, 32, 2753-2763.	3.2	27
21	Chitosanâ€Gated Magneticâ€Responsive Nanocarrier for Dualâ€Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy. Advanced Healthcare Materials, 2017, 6, 1601080.	3.9	26
22	Effect of Surface Passivation on Nanodiamond Crystallinity. Journal of Physical Chemistry C, 2018, 122, 8573-8580.	1.5	24
23	High surface area carbon nanotube-supported titanium carbonitride aerogels. Journal of Materials Chemistry, 2009, 19, 5503.	6.7	21
24	Rapid sol–gel synthesis of nanodiamond aerogel. Journal of Materials Research, 2014, 29, 2905-2911.	1.2	20
25	Can lasers really refrigerate CdS nanobelts?. Nature, 2019, 570, E60-E61.	13.7	19
26	Interface-Dependent Radiative Lifetimes of Yb ³⁺ , Er ³⁺ Co-doped Single NaYF ₄ Upconversion Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 22817-22823.	4.0	18
27	The impact of 2H Â→Â4I emission from Er3+ ions on ratiometric optical temperature sensing with Yb3+/Er3+ co-doped upconversion materials. Journal of Luminescence, 2021, 236, 118006.	1.5	18
28	Optomechanical Thermometry of Nanoribbon Cantilevers. Journal of Physical Chemistry C, 2018, 122, 7525-7532.	1.5	17
29	Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator. Nature Communications, 2020, 11, 3235.	5.8	17
30	Quantum Point Defects for Solidâ€State Laser Refrigeration. Advanced Materials, 2021, 33, e1905406.	11.1	17
31	Accelerator-based production of the 99mTc-186Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OsS2). Applied Radiation and Isotopes, 2016, 114, 159-166.	0.7	16
32	Electronic structures and spectroscopic signatures of silicon-vacancy containing nanodiamonds. Physical Review B, 2018, 98, .	1.1	16
33	Deuteron irradiation of W and WO3 for production of high specific activity 186Re: Challenges associated with thick target preparation. Applied Radiation and Isotopes, 2016, 115, 197-207.	0.7	15
34	Patterning of graphene oxide with optoelectronic tweezers. Applied Physics Letters, 2018, 113, .	1.5	15
35	Singlet-Oxygen Generation from Individual Semiconducting and Metallic Nanostructures during Near-Infrared Laser Trapping. ACS Photonics, 2015, 2, 559-564.	3.2	14
36	A mail-in and user facility for X-ray absorption near-edge structure: the CEI-XANES laboratory X-ray spectrometer at the University of Washington. Journal of Synchrotron Radiation, 2019, 26, 2086-2093.	1.0	14

#	Article	IF	CITATIONS
37	Copper- and chloride-mediated synthesis and optoelectronic trapping of ultra-high aspect ratio palladium nanowires. Journal of Materials Chemistry A, 2018, 6, 5644-5651.	5.2	13
38	Photothermal Heating and Cooling of Nanostructures. Chemistry - an Asian Journal, 2018, 13, 2575-2586.	1.7	13
39	Design of a radiation-balanced fiber laser via optically active composite cladding materials. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3307.	0.9	13
40	Scale-up of high specific activity ^{186g} Re production using graphite-encased thick ¹⁸⁶ W targets and demonstration of an efficient target recycling process. Radiochimica Acta, 2017, 105, 1071-1081.	0.5	12
41	Photothermal effects during nanodiamond synthesis from a carbon aerogel in a laser-heated diamond anvil cell. Diamond and Related Materials, 2018, 87, 134-142.	1.8	12
42	Hydrothermal Synthesis of Yb ³⁺ : LuLiF ₄ Microcrystals and Laser Refrigeration of Yb ³⁺ : LuLiF ₄ /Siliconâ€Nitride Composite Nanostructures. Laser and Photonics Reviews, 2021, 15, 2100019.	4.4	12
43	Trapping and Transport of Silicon Nanowires Using Lateral-Field Optoelectronic Tweezers. , 2007, , .		10
44	Additive Manufacturing of a Flexible Carbon Monoxide Sensor Based on a SnO2-Graphene Nanoink. Chemosensors, 2020, 8, 36.	1.8	10
45	Hydrothermal Synthesis and Solid-State Laser Refrigeration of Ytterbium-Doped Potassium-Lutetium-Fluoride (KLF) Microcrystals. Chemistry of Materials, 2021, 33, 4417-4424.	3.2	10
46	Laser refrigeration of optically levitated sodium yttrium fluoride nanocrystals. Optics Letters, 2021, 46, 3797.	1.7	10
47	Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering. Nature Communications, 2019, 10, 4942.	5.8	8
48	Semiconductor nanowire manipulation using optoelectronic tweezers. , 2007, , .		7
49	Mass Transport in Nanowire Synthesis: An Overview of Scalable Nanomanufacturing. Journal of Materials Science and Technology, 2015, 31, 523-532.	5.6	7
50	<i>In Situ</i> Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers. Advances in OptoElectronics, 2012, 2012, 1-4.	0.6	6
51	Photothermal Superheating of Water with Ionâ€Implanted Silicon Nanowires. Advanced Optical Materials, 2015, 3, 1362-1367.	3.6	6
52	Hot Brownian thermometry and cavity-enhanced harmonic generation with nonlinear optical nanowires. Chemical Physics Letters, 2015, 639, 310-314.	1.2	6
53	Crystalline loading of lipophilic Coenzyme Q10 pharmaceuticals within conjugated carbon aerogel derivatives. Carbon, 2020, 164, 451-458.	5.4	6
54	Laser-Driven Growth of Semiconductor Nanowires from Colloidal Nanocrystals. ACS Nano, 2021, 15, 8653-8662.	7.3	6

#	Article	IF	CITATIONS
55	Spectroscopic Signatures of the B and H ₄ Polyatomic Nitrogen Aggregates in Nanodiamond. Journal of Physical Chemistry C, 2020, 124, 18275-18283.	1.5	5
56	Safe and Scalable Polyethylene Glycol-Assisted Hydrothermal Synthesis and Laser Cooling of 10%Yb3+:LiLuF4 Crystals. Applied Sciences (Switzerland), 2022, 12, 774.	1.3	4
57	Chemically Tunable Aspect Ratio Control and Laser Refrigeration of Hexagonal Sodium Yttrium Fluoride Upconverting Materials. Crystal Growth and Design, 2022, 22, 3605-3612.	1.4	4
58	Pulsed Photothermal Heating of One-Dimensional Nanostructures. Journal of Physical Chemistry C, 2016, 120, 21730-21739.	1.5	3
59	Photothermal Heating of Semiconductor Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 28941-28947.	1.5	3
60	Photothermal heating of nanoribbons. Optical Engineering, 2017, 56, 011111.	0.5	1
61	Reply to Comment on "A Mechanistic Understanding of Nonclassical Crystal Growth in Hydrothermally Synthesized Sodium Yttrium Fluoride Nanowires― Chemistry of Materials, 2021, 33, 3862-3864.	3.2	1
62	Laser refrigeration of optical fibers via optically-active composite cladding materials. , 2019, , .		1
63	Semiconductor yields sensitive thermometry. Nature Photonics, 2022, 16, 407-408.	15.6	1
64	Study of the dipole-dipole interaction between metallic nanowires trapped using Optoelectronic Tweezers (OET). , 2008, , .		0
65	Analytical predictions of the temperature profile within semiconductor nanostructures for solid-state laser refrigeration. , 2016, , .		0
66	Laser refrigeration of rare-earth doped sodium-yttrium-fluoride nanowires. , 2017, , .		0
67	Observation of Void Formation in Cubic NaYF4 Nanocrystals Using In Situ Heating Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1496-1497.	0.2	0
68	Laser Refrigeration of Sodium Yttrium Fluoride Nanoparticles in a Vacuum Optical Tweezer. , 2021, , .		0
69	Laser Refrigeration of Rare-earth Doped Sodium Yttrium Fluoride Nanowires with Anti-Stokes Fluorescence. , 2017, , .		0
70	Ion-implanted silicon nanowires. Series in Materials Science and Engineering, 2017, , 495-514.	0.1	0
71	Laser refrigeration of ytterbium-doped alkali-yttrium-fluoride nanostructures (Yb:MYF, M = K, Na, Li). , 2019, , .		0
72	Anti-Stokes laser refrigeration of a nanoscale semiconductor gain medium. , 2019, , .		0

Anti-Stokes laser refrigeration of a nanoscale semiconductor gain medium. , 2019, , . 72

#	Article	IF	CITATIONS
73	Reduced photothermal heating in diamonds enriched with H3 point defects. Journal of Applied Physics, 2022, 131, 234401.	1.1	0