
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139236/publications.pdf Version: 2024-02-01



Ενα νειμεικονά:

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of immersion time in acetone and isopropanol on hydration stoppage of hardened cement paste.<br>AIP Conference Proceedings, 2022, , .                                         | 0.3 | 0         |
| 2  | On the composition of sodium silicate - sodium hydroxide activator for the waste ceramics recycling.<br>AIP Conference Proceedings, 2022, , .                                        | 0.3 | 0         |
| 3  | Utilization of ceramic powder, calcined shale and sintered mullite as partial replacements of calcium aluminate cement. Construction and Building Materials, 2022, 326, 126824.      | 3.2 | 13        |
| 4  | Effects of accelerated carbonation on properties of ceramic-based geopolymers. Journal of Thermal<br>Analysis and Calorimetry, 2021, 145, 2951-2966.                                 | 2.0 | 1         |
| 5  | Comparison of water removal methods from cement paste at early age. AIP Conference Proceedings, 2021, , .                                                                            | 0.3 | 2         |
| 6  | Application of expanded glass granulate and basalt fibers in the formation of lightweight cement-based refractory composite. AIP Conference Proceedings, 2021, , .                   | 0.3 | 0         |
| 7  | Influence of aluminosilicate fibers on mechanical properties of composite based on Portland cement exposed to high temperatures. AIP Conference Proceedings, 2021, , .               | 0.3 | 0         |
| 8  | Exploiting advantages of empirical and optimization approaches to design alkali activated materials in a more efficient way. Construction and Building Materials, 2021, 292, 123460. | 3.2 | 5         |
| 9  | Alkali-activated waste ceramics: Importance of precursor particle size distribution. Ceramics International, 2021, 47, 31574-31582.                                                  | 2.3 | 10        |
| 10 | Impact of precursor granulometry on mechanical properties of geopolymers activated by potassium silicate. AIP Conference Proceedings, 2021, , .                                      | 0.3 | 0         |
| 11 | Properties of CAC paste with varying alumina based admixtures. AIP Conference Proceedings, 2021, , .                                                                                 | 0.3 | 2         |
| 12 | Physical and chemical characteristics of heat resistant materials based on high alumina cement. AIP<br>Conference Proceedings, 2021, , .                                             | 0.3 | 2         |
| 13 | Impact of oven drying and sample dimensions on calcite content in cement pastes. AIP Conference<br>Proceedings, 2021, , .                                                            | 0.3 | 0         |
| 14 | Influence of metakaolin on pH of cement paste. AIP Conference Proceedings, 2021, , .                                                                                                 | 0.3 | 1         |
| 15 | Alkaline activation of low-reactivity ceramics: Peculiarities induced by the precursors' dual character. Cement and Concrete Composites, 2020, 105, 103440.                          | 4.6 | 14        |
| 16 | Quantification of vegetable oil content in lime mortar by thermal analysis. AIP Conference<br>Proceedings, 2020, , .                                                                 | 0.3 | 2         |
| 17 | Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity. Materials, 2020, 13, 2948.                                                                       | 1.3 | 16        |
| 18 | The influence of zeolite on the sorption ability of concrete. AIP Conference Proceedings, 2020, , .                                                                                  | 0.3 | 0         |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evaluation of the Mechanical, Physical, and Anti-Fungal Properties of Flax Laboratory Papersheets with the Nanoparticles Treatment. Materials, 2020, 13, 363.                         | 1.3 | 18        |
| 20 | Phase composition of ceramic-based alkali-activated polymers: combination of X-ray diffraction and thermal analysis. Journal of Thermal Analysis and Calorimetry, 2020, 142, 157-166. | 2.0 | 5         |
| 21 | Characterization of ceramic-based alkali activated aluminosilicate composites. AIP Conference<br>Proceedings, 2020, , .                                                               | 0.3 | 1         |
| 22 | Kinetic sorption in the transport of species in a cement based composite. AIP Conference Proceedings, 2019, , .                                                                       | 0.3 | 0         |
| 23 | Transport of gadolinium in a cement composite. MATEC Web of Conferences, 2019, 282, 02105.                                                                                            | 0.1 | 3         |
| 24 | Characterization of geopolymers prepared using powdered brick. Journal of Materials Research and Technology, 2019, 8, 6253-6261.                                                      | 2.6 | 39        |
| 25 | Pore structure and hygric properties of composite materials for radionuclide protection barriers.<br>MATEC Web of Conferences, 2019, 282, 02055.                                      | 0.1 | 0         |
| 26 | Thermal, hygric and mechanical properties of HPC containing silica fume. AIP Conference Proceedings, 2019, , .                                                                        | 0.3 | 1         |
| 27 | Thermal characteristics of bentonite cement based composites. AIP Conference Proceedings, 2019, , .                                                                                   | 0.3 | 0         |
| 28 | Pore structure and hygrothermal characteristics of HPC based on Portland cement – Slag blends. AIP<br>Conference Proceedings, 2019, , .                                               | 0.3 | 0         |
| 29 | Effect of zeolite as a sorbent on cesium toxicity of cement-based materials. AIP Conference<br>Proceedings, 2019, , .                                                                 | 0.3 | 0         |
| 30 | Effect of a varying moisture diffusivity in the transport of gadolinium in a porous material. AIP<br>Conference Proceedings, 2019, , .                                                | 0.3 | 0         |
| 31 | Effect of Cu-Zn coated steel fibers on high temperature resistance of reactive powder concrete.<br>Cement and Concrete Research, 2019, 117, 45-57.                                    | 4.6 | 28        |
| 32 | VARYING SORPTION ADMIXTURE FOR CONCRETE CASING FOR RADIONUCLIDE PROTECTION BARRIERS: MECHANICAL PROPERTIES. , 2019, , .                                                               |     | 0         |
| 33 | Highâ€strength concrete based on ternary binder with high pozzolan content. Structural Concrete,<br>2018, 19, 1258-1267.                                                              | 1.5 | 17        |
| 34 | Effect of calcined Czech claystone on the properties of high performance concrete: Microstructure, strength and durability. Construction and Building Materials, 2018, 168, 966-974.  | 3.2 | 23        |
| 35 | Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment.<br>International Journal of Thermophysics, 2018, 39, 1.                                     | 1.0 | 12        |
| 36 | High temperature durability of fiber reinforced high alumina cement composites. Construction and<br>Building Materials, 2018, 162, 881-891.                                           | 3.2 | 28        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content. Applied Clay Science, 2018, 161, 82-89.                                                    | 2.6 | 58        |
| 38 | Cumulative damage assessment of concrete exposed to environmental effects. AIP Conference Proceedings, 2018, , .                                                                                  | 0.3 | 0         |
| 39 | Methodology of sealing plugs development for brick block with enhanced acoustic properties. AIP Conference Proceedings, 2018, , .                                                                 | 0.3 | 2         |
| 40 | Thermal and hygric properties of alkali activated aluminosilicates. AIP Conference Proceedings, 2018, ,                                                                                           | 0.3 | 0         |
| 41 | Hygric parameters of ternary binder based plasters lightweighted by expanded perlite. AIP Conference<br>Proceedings, 2018, , .                                                                    | 0.3 | 0         |
| 42 | Mechanical and hygric properties of lime plasters modified by biomass fly ash. IOP Conference Series:<br>Materials Science and Engineering, 2018, 365, 032059.                                    | 0.3 | 4         |
| 43 | Application of waste brick powder in alkali activated aluminosilicates: Functional and environmental aspects. Journal of Cleaner Production, 2018, 194, 714-725.                                  | 4.6 | 140       |
| 44 | Monitoring the effect of external conditions on the properties of building materials. IOP Conference<br>Series: Materials Science and Engineering, 2018, 365, 032051.                             | 0.3 | 0         |
| 45 | DEVELOPMENT OF POROUS STRUCTURE OF CERAMIC-BASED GEOPOLYMERS. , 2018, , .                                                                                                                         |     | 0         |
| 46 | Thermal analysis of highâ€performance mortar containing burnt clay shale as a partial portland cement<br>replacement in the temperature range up to 1000 °C. Fire and Materials, 2017, 41, 54-64. | 0.9 | 6         |
| 47 | Effect of Moisture Content on Thermal Properties of Porous Building Materials. International<br>Journal of Thermophysics, 2017, 38, 1.                                                            | 1.0 | 13        |
| 48 | Mechanical and thermal properties of HSC with fine natural pozzolana as SCM. AIP Conference<br>Proceedings, 2017, , .                                                                             | 0.3 | 0         |
| 49 | Lime-based plasters with combined expanded clay-silica aggregate: Microstructure, texture and engineering properties. Cement and Concrete Composites, 2017, 83, 374-383.                          | 4.6 | 27        |
| 50 | The influence of high temperatures on selected properties of calcium aluminous composites. AIP Conference Proceedings, 2017, , .                                                                  | 0.3 | 0         |
| 51 | Monitoring the Damage of Exterior Renders Caused by the Environment. International Journal of<br>Sustainable Development and Planning, 2017, 12, 342-351.                                         | 0.3 | 2         |
| 52 | ENGINEERING PROPERTIES OF CONCRETE SUITABLE FOR CONSTRUCTING PHYSICAL BARRIERS IN RADIOACTIVE WASTE DISPOSAL FACILITIES. , 2017, , .                                                              |     | 0         |
| 53 | Application of Ceramic Powder as Supplementary Cementitious Material in Lime Plasters.<br>Medziagotyra, 2016, 22, .                                                                               | 0.1 | 6         |
| 54 | Water Vapor Diffusion and Adsorption of Sandstones: Influence of Rock Texture and Composition.<br>Advances in Materials Science and Engineering, 2016, 2016, 1-7.                                 | 1.0 | 10        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | High-temperature testing of high performance fiber reinforced concrete. AIP Conference Proceedings, 2016, , .                                                                                                                       | 0.3 | 1         |
| 56 | Application of waste ceramic dust as a ready-to-use replacement of cement in lime-cement plasters: an<br>environmental-friendly and energy-efficient solution. Clean Technologies and Environmental Policy,<br>2016, 18, 1725-1733. | 2.1 | 51        |
| 57 | Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Structural Concrete, 2016, 17, 105-115.                                                                        | 1.5 | 49        |
| 58 | Hygric Properties of Lime-cement Plasters with the Addition of a Pozzolana. Procedia Engineering, 2016, 151, 127-132.                                                                                                               | 1.2 | 2         |
| 59 | Moisture properties of the lightweight brick body. AIP Conference Proceedings, 2016, , .                                                                                                                                            | 0.3 | 2         |
| 60 | Modeling of heat evolution in silicate building materials with electrically conductive admixtures. AIP Conference Proceedings, 2016, , .                                                                                            | 0.3 | 2         |
| 61 | Mechanical and thermal properties of the Czech marbles. AIP Conference Proceedings, 2016, , .                                                                                                                                       | 0.3 | 3         |
| 62 | Thermal Expansion of Aluminate Cement-Based Composite Containing Basalt Fibres with Different<br>Length. Key Engineering Materials, 2016, 675-676, 675-678.                                                                         | 0.4 | 0         |
| 63 | Effect of heat and moisture transport and storage properties of building stones on the hygrothermal performance of historical building envelopes. AIP Conference Proceedings, 2016, , .                                             | 0.3 | 1         |
| 64 | Multi-parameter optimization of lime composite design using a modified downhill simplex method.<br>Composites Part B: Engineering, 2016, 93, 184-189.                                                                               | 5.9 | 12        |
| 65 | Engineering properties of composite materials containing waste ceramic dust from advanced hollow<br>brick production as a partial replacement of Portland cement. Journal of Building Physics, 2016, 40,<br>17-34.                  | 1.2 | 9         |
| 66 | Effect of Metashaleas SCM on Mechanical and Thermal Properties in Concrete Production. Applied Mechanics and Materials, 2015, 763, 41-46.                                                                                           | 0.2 | 1         |
| 67 | Thermal Properties of High-Performance Concrete Containing Fine-Ground Ceramics as a Partial<br>Cement Replacement. Medziagotyra, 2015, 21, .                                                                                       | 0.1 | 3         |
| 68 | Treated Coconut Coir Pith as Component of Cementitious Materials. Advances in Materials Science and Engineering, 2015, 2015, 1-8.                                                                                                   | 1.0 | 7         |
| 69 | Hygric properties of sandstones as a function of porosity. AIP Conference Proceedings, 2015, , .                                                                                                                                    | 0.3 | 1         |
| 70 | Thermal insulating plasters and their hygric properties. AIP Conference Proceedings, 2015, , .                                                                                                                                      | 0.3 | 1         |
| 71 | Engineering properties of concrete containing natural zeolite as supplementary cementitious<br>material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete<br>Composites, 2015, 55, 259-267.       | 4.6 | 124       |
| 72 | Theoretical and Experimental Analysis of Moisture-Dependent Thermal Conductivity of Lightweight<br>Ceramic Bricks. International Journal of Thermophysics, 2014, 35, 1912-1921.                                                     | 1.0 | 11        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Comparative Study on Thermal Properties of Two Types of Concrete Containing Fine Ceramic Waste and Burnt Clay Shale as a Supplementary Material. Advanced Materials Research, 2014, 982, 79-83.        | 0.3 | 3         |
| 74 | Cement Composites for High Temperature Applications. Advanced Materials Research, 2014, 982, 154-158.                                                                                                    | 0.3 | 7         |
| 75 | Hygric Transport Parameters of Several Kinds of Sandstones. Applied Mechanics and Materials, 2014, 621, 24-29.                                                                                           | 0.2 | 0         |
| 76 | Differences in the Properties of Arenaceous Marlstones from Different Quarries. Advanced Materials<br>Research, 2014, 982, 149-153.                                                                      | 0.3 | 0         |
| 77 | Pore Structure and Thermal Characteristics of Clay Bricks. Advanced Materials Research, 2014, 982, 104-107.                                                                                              | 0.3 | 20        |
| 78 | Application of Effective Media Theory for Determination of Thermal Properties of Hollow Bricks as a Function of Moisture Content. International Journal of Thermophysics, 2013, 34, 894-908.             | 1.0 | 42        |
| 79 | Monitoring of Deformation of Steel Structure-Roof of Football Stadium Slavia Prague. Applied Mechanics and Materials, 2012, 239-240, 622-630.                                                            | 0.2 | 2         |
| 80 | Properties of lime composites containing a new type of pozzolana for the improvement of strength and durability. Composites Part B: Engineering, 2012, 43, 3534-3540.                                    | 5.9 | 31        |
| 81 | Effect of hydrophobization on the properties of lime–metakaolin plasters. Construction and Building<br>Materials, 2012, 37, 556-561.                                                                     | 3.2 | 44        |
| 82 | Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cement and Concrete Composites, 2012, 34, 55-61.                                         | 4.6 | 115       |
| 83 | Application of burnt clay shale as pozzolan addition to lime mortar. Cement and Concrete<br>Composites, 2012, 34, 486-492.                                                                               | 4.6 | 51        |
| 84 | Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime–metakaolin<br>plasters for renovation of historical buildings. Construction and Building Materials, 2012, 31, 22-28. | 3.2 | 84        |
| 85 | Apparent thermal conductivity approach at high-temperature measurements of porous materials.<br>Measurement: Journal of the International Measurement Confederation, 2011, 44, 1220-1228.                | 2.5 | 15        |
| 86 | Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag.<br>Construction and Building Materials, 2011, 25, 1325-1331.                                               | 3.2 | 108       |
| 87 | High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Construction and Building Materials, 2010, 24, 1404-1411.                  | 3.2 | 126       |
| 88 | THERMOPHYSICAL AND MECHANICAL PROPERTIES OF FIBERâ€REINFORCED COMPOSITE MATERIAL SUBJECTED TO HIGH TEMPERATURES. Journal of Civil Engineering and Management, 2010, 16, 395-400.                         | 1.9 | 11        |
| 89 | Free Water Intake as Means of Material Characterization. Journal of Building Physics, 2009, 33, 29-44.                                                                                                   | 1.2 | 72        |
| 90 | Mechanical, Hygric, and Thermal Properties of Cement-Based Composite with Hybrid Fiber<br>Reinforcement Subjected to High Temperatures. International Journal of Thermophysics, 2009, 30,<br>1310-1322.  | 1.0 | 13        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of Moisture on Thermal Conductivity of Lime-Based Composites. International Journal of Thermophysics, 2009, 30, 1999-2014.                                                  | 1.0 | 30        |
| 92  | High performance concrete containing lower slag amount: A complex view of mechanical and durability properties. Construction and Building Materials, 2009, 23, 2237-2245.          | 3.2 | 61        |
| 93  | Effect of cracks on hygric and thermal characteristics of concrete. Bauphysik, 2008, 30, 438-444.                                                                                  | 1.2 | 29        |
| 94  | Innovative Lime-Pozzolana Renders for Reconstruction of Historical Buildings. Advanced Materials<br>Research, 0, 324, 372-375.                                                     | 0.3 | 5         |
| 95  | Characterization of Building Stones Involved in Historical Masonry. Advanced Materials Research, 0, 324, 388-391.                                                                  | 0.3 | 6         |
| 96  | Thermal Properties of PVA-Fiber Reinforced Cement Composites at High Temperatures. Applied<br>Mechanics and Materials, 0, 377, 45-49.                                              | 0.2 | 9         |
| 97  | Influence of Metashale as Cement Replacement on the Hygric Transport Properties of Concrete.<br>Advanced Materials Research, 0, 1054, 188-193.                                     | 0.3 | 5         |
| 98  | Heat and Water Vapor Transport Properties of Selected Commercially Produced Plasters. Advanced<br>Materials Research, 0, 982, 90-93.                                               | 0.3 | 9         |
| 99  | Mechanical and Thermal Properties of Composites Containing Waste Coir Pith. Advanced Materials<br>Research, 0, 1054, 238-242.                                                      | 0.3 | 5         |
| 100 | Mechanical and Thermal Properties of Moderate-Strength Concrete with Ceramic Powder Used as<br>Supplementary Cementitious Material. Advanced Materials Research, 0, 1054, 194-198. | 0.3 | 24        |
| 101 | Thermal Properties of Selected Timbers. Advanced Materials Research, 0, 982, 100-103.                                                                                              | 0.3 | 4         |
| 102 | Application of Zeolite as a Partial Replacement of Cement in Concrete Production. Applied Mechanics and Materials, 0, 621, 30-34.                                                  | 0.2 | 4         |
| 103 | Properties of Cement Composites Containing Coir Pith. Advanced Materials Research, 0, 982, 136-140.                                                                                | 0.3 | 3         |
| 104 | Influence of Basalt Fibres and Aggregates on the Thermal Expansion of Cement-Based Composites.<br>Advanced Materials Research, 0, 1054, 17-21.                                     | 0.3 | 6         |
| 105 | Lime Plasters Containing Waste Ceramic Powder as Partial Replacement of Siliceous Aggregates.<br>Advanced Materials Research, 0, 1035, 77-82.                                      | 0.3 | 3         |
| 106 | Properties of Lime Plasters with Different Ceramic Powder Dosage. Applied Mechanics and Materials,<br>0, 621, 19-23.                                                               | 0.2 | 5         |
| 107 | Pore Distribution and Water Vapor Diffusion Parameters of Lime Plasters with Waste Brick Powder.<br>Advanced Materials Research, 0, 1054, 205-208.                                 | 0.3 | 7         |
| 108 | Influence of Selected Pozzolanas on Basic Physical and Mechanical Properties of HSC. Materials<br>Science Forum, 0, 824, 39-42.                                                    | 0.3 | 0         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Basic and Thermal Characteristics of Render with Crushed Brick. Materials Science Forum, 0, 824, 7-11.                                                                                                | 0.3 | Ο         |
| 110 | Pore Structure and Hydric Characteristics of Renders with Blended Binder. Materials Science Forum, 0, 824, 89-93.                                                                                     | 0.3 | 1         |
| 111 | Mechanical and Water Transport Properties of HSC with Different SCMs. Materials Science Forum, 0, 824, 105-110.                                                                                       | 0.3 | О         |
| 112 | Influence of Cracks on the Properties of Self-Compacting Concrete. Materials Science Forum, 0, 824, 139-143.                                                                                          | 0.3 | 0         |
| 113 | Reinforced Cement Composites – Effect of Hybrid Fibres on Selected Properties. Materials Science<br>Forum, 0, 824, 179-183.                                                                           | 0.3 | 0         |
| 114 | Properties of Concrete with Lower Amount of SCM. Materials Science Forum, 0, 824, 65-69.                                                                                                              | 0.3 | 0         |
| 115 | Effect of External Environment on the Properties of Selected Plasters. Advanced Materials Research,<br>O, 1125, 377-381.                                                                              | 0.3 | Ο         |
| 116 | Mechanical and Thermal Properties of HSC with Fine Natural Pozzolana as SCM. Materials Science<br>Forum, 0, 824, 167-171.                                                                             | 0.3 | 0         |
| 117 | Hygric Properties of HPC with Natural Pozzolana. Key Engineering Materials, 0, 677, 93-97.                                                                                                            | 0.4 | 1         |
| 118 | Basic Physical and Mechanical Properties of Composites Based on Three Different Cements. Key<br>Engineering Materials, 0, 677, 186-190.                                                               | 0.4 | 1         |
| 119 | Influence of Moisture Content on the Thermal Properties of Concrete Containing Agricultural Waste<br>Materials. Key Engineering Materials, 0, 677, 241-245.                                           | 0.4 | 0         |
| 120 | Experimental and Theoretical Study of Heat Transport Parameters of Plasters Containing Pozzolanic<br>Admixtures. Key Engineering Materials, 0, 675-676, 569-572.                                      | 0.4 | 0         |
| 121 | The Comparison of Water, Water Vapour Transport Properties and Mechanical Characterization of<br>Two Commercial Plasters on Market in the Czech Republic. Key Engineering Materials, 0, 722, 357-361. | 0.4 | Ο         |
| 122 | Pore System and Hydric Properties of Two Different Lime Plasters with Finely Crushed Brick. Key<br>Engineering Materials, 0, 675-676, 597-600.                                                        | 0.4 | 3         |
| 123 | Comparison of the Effects of Different Pozzolana on the Properties of Self-Compacting Concrete. Key<br>Engineering Materials, 0, 677, 103-107.                                                        | 0.4 | 2         |
| 124 | Porous Structure and Hygric Properties of Concrete for Radioactive Waste Repositories. Key<br>Engineering Materials, 0, 760, 127-131.                                                                 | 0.4 | 3         |
| 125 | Influence of Supplementary Cementitious Materials on the Properties of Concrete for Secondary<br>Protection Barrier in Radioactive Waste Repositories. Key Engineering Materials, 0, 760, 96-101.     | 0.4 | 0         |
| 126 | Mechanical and Basic Physical Properties of High-Strength Concrete Exposed to Elevated<br>Temperatures. Key Engineering Materials, 0, 760, 108-113.                                                   | 0.4 | 1         |