
Samara L Reck-Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis for cytoplasmic dynein-1 regulation by Lis1. ELife, 2022, 11, .	6.0	29
2	Self-repair protects microtubules from destruction by molecular motors. Nature Materials, 2021, 20, 883-891.	27.5	67
3	PxdA interacts with the DipA phosphatase to regulate peroxisome hitchhiking on early endosomes. Molecular Biology of the Cell, 2021, 32, 492-503.	2.1	14
4	Structural Biology of <scp>LRRK2</scp> and its Interaction with Microtubules. Movement Disorders, 2021, 36, 2494-2504.	3.9	10
5	Optimizing microtubule arrangements for rapid cargo capture. Biophysical Journal, 2021, 120, 4918-4931.	0.5	6
6	Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS–Hook–FHIP complexes. ELife, 2021, 10, .	6.0	27
7	Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Nature, 2020, 588, 344-349.	27.8	147
8	Hitching a Ride: Mechanics of Transport Initiation through Linker-Mediated Hitchhiking. Biophysical Journal, 2020, 118, 1357-1369.	0.5	18
9	LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nature Cell Biology, 2020, 22, 518-525.	10.3	93
10	Hook3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C. Journal of Cell Biology, 2019, 218, 2982-3001.	5.2	57
11	A minimal computational model for three-dimensional cell migration. Journal of the Royal Society Interface, 2019, 16, 20190619.	3.4	23
12	The cytoplasmic dynein transport machinery and its many cargoes. Nature Reviews Molecular Cell Biology, 2018, 19, 382-398.	37.0	485
13	Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4564-E4573.	7.1	35
14	Lis1 Has Two Opposing Modes of Regulating Cytoplasmic Dynein. Cell, 2017, 170, 1197-1208.e12.	28.9	78
15	Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport. Trends in Cell Biology, 2017, 27, 141-150.	7.9	82
16	The human cytoplasmic dynein interactome reveals novel activators of motility. ELife, 2017, 6, .	6.0	120
17	Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. Journal of Cell Biology, 2016, 212, 289-296.	5.2	100
18	Regulation of Cytoplasmic Dynein by Lisl. Microscopy and Microanalysis, 2015, 21, 59-60.	0.4	0

#	Article	IF	CITATIONS
19	Dynactin revealed. Nature Structural and Molecular Biology, 2015, 22, 359-360.	8.2	6
20	Mechanism and Regulation of Cytoplasmic Dynein. Annual Review of Cell and Developmental Biology, 2015, 31, 83-108.	9.4	206
21	Cytoplasmic Dynein Is Required for the Spatial Organization of Protein Aggregates in Filamentous Fungi. Cell Reports, 2015, 11, 201-209.	6.4	21
22	Engineering Defined Motor Ensembles with DNA Origami. Methods in Enzymology, 2014, 540, 169-188.	1.0	8
23	Characterization of the Mutagenic Spectrum of 4-Nitroquinoline 1-Oxide (4-NQO) in <i>Aspergillus nidulans</i> by Whole Genome Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 2483-2492.	1.8	38
24	A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity. Molecular Biology of the Cell, 2014, 25, 669-678.	2.1	27
25	Human CFEOM1 Mutations Attenuate KIF21A Autoinhibition and Cause Oculomotor Axon Stalling. Neuron, 2014, 82, 334-349.	8.1	101
26	Shifting gears with light. Nature Nanotechnology, 2014, 9, 661-662.	31.5	0
27	Reconstitution of dynein transport to the microtubule plus end by kinesin. ELife, 2014, 3, e02641.	6.0	92
28	Lis1 regulates dynein by sterically blocking its mechanochemical cycle. ELife, 2014, 3, .	6.0	89
29	Teaming up: from motors to people. Molecular Biology of the Cell, 2013, 24, 3267-3269.	2.1	0
30	Lis1 Acts as a "Clutch―between the ATPase and Microtubule-Binding Domains of the Dynein Motor. Cell, 2012, 150, 975-986.	28.9	209
31	Dynein achieves processive motion using both stochastic and coordinated stepping. Nature Structural and Molecular Biology, 2012, 19, 193-200.	8.2	198
32	Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters. Cell, 2012, 148, 502-514.	28.9	362
33	Engineered, harnessed, and hijacked: synthetic uses for cytoskeletal systems. Trends in Cell Biology, 2012, 22, 644-652.	7.9	21
34	Microtubule-based transport in filamentous fungi. Current Opinion in Microbiology, 2012, 15, 637-645.	5.1	87
35	Structural Basis for Microtubule Binding and Release by Dynein. Science, 2012, 337, 1532-1536.	12.6	162
36	Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold. Science, 2012, 338, 662-665.	12.6	383

#	Article	IF	CITATIONS
37	Lis1 is an initiation factor for dynein-driven organelle transport. Journal of Cell Biology, 2012, 197, 971-982.	5.2	165
38	Mechanisms Underlying the Dual-Mode Regulation of Microtubule Dynamics by Kip3/Kinesin-8. Molecular Cell, 2011, 43, 751-763.	9.7	122
39	Probing the Force Generation and Stepping Behavior of Cytoplasmic Dynein. Methods in Molecular Biology, 2011, 783, 63-80.	0.9	13
40	Aspergillus Myosin-V Supports Polarized Growth in the Absence of Microtubule-Based Transport. PLoS ONE, 2011, 6, e28575.	2.5	35
41	Determining Single-Molecule Intensity as a Function of Power Density: Figure 1 Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5398.	0.3	2
42	Imaging Single Molecular Motor Motility with Total Internal Reflection Fluorescence Microscopy (TIRFM): Movie 1 Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5399.	0.3	4
43	Imaging Single Molecules Using Total Internal Reflection Fluorescence Microscopy (TIRFM). Cold Spring Harbor Protocols, 2010, 2010, pdb.top73.	0.3	31
44	Regulation of the processivity and intracellular localization of <i>Saccharomyces cerevisiae</i> dynein by dynactin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5669-5674.	7.1	131
45	Regulatory ATPase Sites of Cytoplasmic Dynein Affect Processivity and Force Generation. Journal of Biological Chemistry, 2008, 283, 25839-25845.	3.4	123
46	Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid–protein complex that contains mRNAs and subunits of the RNA-processing body. Rna, 2008, 14, 491-502.	3.5	29
47	Force-Induced Bidirectional Stepping of Cytoplasmic Dynein. Cell, 2007, 131, 952-965.	28.9	361
48	Single-Molecule Analysis of Dynein Processivity and Stepping Behavior. Cell, 2006, 126, 335-348.	28.9	571
49	Cell Polarity Protein Spa2P Associates With Proteins Involved In Actin Function InSaccharomyces Cerevisiae. Molecular Biology of the Cell, 2005, 16, 4595-4608.	2.1	33
50	The Affinity of the Dynein Microtubule-binding Domain Is Modulated by the Conformation of Its Coiled-coil Stalk. Journal of Biological Chemistry, 2005, 280, 23960-23965.	3.4	159
51	Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1491-1495.	7.1	83
52	Nuclear Actin and Actin-Related Proteins in Chromatin Remodeling. Annual Review of Biochemistry, 2002, 71, 755-781.	11.1	379
53	The Yeast Class V Myosins, Myo2p and Myo4p, Are Nonprocessive Actin-Based Motors. Journal of Cell Biology, 2001, 153, 1121-1126.	5.2	123
54	Role of Actin and Myo2p in Polarized Secretion and Growth of <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2000, 11, 1727-1737.	2.1	103

#	Article	IF	CITATIONS
55	Class V myosins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1496, 36-51.	4.1	251
56	The Tail of a Yeast Class V Myosin, Myo2p, Functions as a Localization Domain. Molecular Biology of the Cell, 1999, 10, 1001-1017.	2.1	81