Li-Ping Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139192/publications.pdf

Version: 2024-02-01

66911 66343 6,384 103 42 78 citations h-index g-index papers 103 103 103 6342 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controllable thermal annealing of polyimide membranes for highly-precise organic solvent nanofiltration. Journal of Membrane Science, 2022, 643, 120013.	8.2	30
2	Regenerable adsorptive membranes prepared by mussel-inspired co-deposition for aqueous dye removal. Separation and Purification Technology, 2022, 281, 119876.	7.9	25
3	In-situ incorporating zwitterionic nanocellulose into polyamide nanofiltration membrane towards excellent perm-selectivity and antifouling performances. Desalination, 2022, 521, 115397.	8.2	32
4	Design of One-Dimensional Cadmium Sulfide/Polydopamine Heteronanotube Photocatalysts for Ultrafast Degradation of Antibiotics. Industrial & Engineering Chemistry Research, 2022, 61, 1100-1110.	3.7	8
5	Improving aging resistance of <scp>PIM</scp> â€l thin films by <scp>nanoâ€liO₂</scp> filler used for robust solvent permeation. Journal of Polymer Science, 2022, 60, 2298-2308.	3.8	2
6	Polyarylester thin films with narrowed pore size distribution via metal-phenolic network modulated interfacial polymerization for precise separation. Journal of Membrane Science, 2022, 646, 120263.	8.2	7
7	In-situ healing of damaged polyethersulfone ultrafiltration membranes with microgels. Journal of Membrane Science, 2022, 647, 120313.	8.2	13
8	Highly permeable polyamide nanofiltration membrane incorporated with phosphorylated nanocellulose for enhanced desalination. Journal of Membrane Science, 2022, 647, 120339.	8.2	26
9	Surface/Interfacial design and tailoring of polymeric membranes for liquid-phase separation. Journal of Zhejiang University: Science A, 2021, 22, 85-93.	2.4	2
10	Positively charged poly (N-vinyl imidazole) gel-filled loose nanofiltration membranes: Performances and modelling analysis. Journal of Membrane Science, 2021, 625, 118975.	8.2	10
11	Intrinsically antibacterial thin film composite membranes with supramolecularly assembled lysozyme nanofilm as selective layer for molecular separation. Separation and Purification Technology, 2021, 254, 117585.	7.9	8
12	Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Advances in Colloid and Interface Science, 2021, 289, 102360.	14.7	49
13	Engineering highly transparent UV-shielding films with disassembled polydopamine oligomers as light adsorber. Applied Surface Science, 2021, 550, 149284.	6.1	18
14	Tailoring ultrathin microporous polyamide films with rapid solvent transport by molecular layer-by-layer deposition. Journal of Membrane Science, 2021, 628, 119249.	8.2	24
15	Engineering novel thin-film composite membranes with crater-like surface morphology using rigidly-contorted monomer for high flux nanofiltration. Desalination, 2021, 509, 115067.	8.2	21
16	Interfacially crosslinked \hat{l}^2 -cyclodextrin polymer composite porous membranes for fast removal of organic micropollutants from water by flow-through adsorption. Journal of Hazardous Materials, 2020, 384, 121187.	12.4	49
17	Polydopamine Nanotubes Decorated with Ag Nanoparticles as Catalyst for the Reduction of Methylene Blue. ACS Applied Nano Materials, 2020, 3, 156-164.	5.0	36
18	Enhancing membrane surface antifouling by implanting amphiphilic polymer brushes using a swelling induced entrapment technique. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111212.	5.0	6

#	Article	IF	CITATIONS
19	PIM-1 pore-filled thin film composite membranes for tunable organic solvent nanofiltration. Journal of Membrane Science, 2020, 601, 117951.	8.2	54
20	Mass transfer enhancement of hollow fiber membrane deoxygenation by Dean vortices. Journal of Zhejiang University: Science A, 2019, 20, 601-613.	2.4	1
21	Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination. Journal of Membrane Science, 2019, 592, 117375.	8.2	61
22	Highly permeable thin-film nanocomposite membranes embedded with PDA/PEG nanocapsules as water transport channels. Journal of Membrane Science, 2019, 586, 115-121.	8.2	46
23	Macroporous membranes doped with micro-mesoporous \hat{l}^2 -cyclodextrin polymers for ultrafast removal of organic micropollutants from water. Carbohydrate Polymers, 2019, 222, 114970.	10.2	32
24	Hierarchically micro-mesoporous \hat{l}^2 -cyclodextrin polymers used for ultrafast removal of micropollutants from water. Carbohydrate Polymers, 2019, 213, 352-360.	10.2	55
25	Cost-Effective Strategy for Surface Modification via Complexation of Disassembled Polydopamine with Fe(III) lons. Langmuir, 2019, 35, 4101-4109.	3.5	26
26	Polyphenols assisted silica coating on polypropylene separators with improved wettability and heatâ€resistance for lithiumâ€ion batteries. Journal of Applied Polymer Science, 2019, 136, 47277.	2.6	23
27	Influences of the chain structure of PEâ€ <i>b</i> à€PEG on the properties of PE/PEâ€ <i>b</i> à€PEG blend membranes prepared by TIPS. Journal of Applied Polymer Science, 2018, 135, 46499.	2.6	3
28	Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-Ion batteries and the role of the interfaces between separator and electrolyte. Electrochimica Acta, 2018, 275, 25-31.	5.2	60
29	Effect of Lithium Doping on the Structures and CO ₂ Adsorption Properties of Metalâ€Organic Frameworks HKUSTâ€1. ChemistrySelect, 2018, 3, 12865-12870.	1.5	34
30	Tough poly(L-DOPA)-containing Double Network Hydrogel Beads with High Capacity of Dye Adsorption. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1251-1261.	3.8	17
31	Ultrathin nanofilm with tailored pore size fabricated by metal-phenolic network for precise and rapid molecular separation. Separation and Purification Technology, 2018, 207, 435-442.	7.9	35
32	Preparation of positively charged composite nanofiltration membranes by quaternization crosslinking for precise molecular and ionic separations. Journal of Colloid and Interface Science, 2018, 531, 168-180.	9.4	29
33	An amphiphobic graphene-based hydrogel as oil-water separator and oil fence material. Chemical Engineering Journal, 2018, 353, 708-716.	12.7	55
34	Poly (N-vinyl imidazole) gel-filled membrane adsorbers for highly efficient removal of dyes from water. Journal of Chromatography A, 2018, 1563, 198-206.	3.7	11
35	Hierarchical Selfâ€Assembly of Dopamine into Patterned Structures. Advanced Materials Interfaces, 2017, 4, 1601218.	3.7	13
36	Interfacially crosslinked composite porous membranes for ultrafast removal of anionic dyes from water through permeating adsorption. Journal of Hazardous Materials, 2017, 337, 217-225.	12.4	60

#	Article	IF	CITATIONS
37	Poly (N-vinyl imidazole) gel composite porous membranes for rapid separation of dyes through permeating adsorption. Separation and Purification Technology, 2017, 188, 1-10.	7.9	35
38	Synthesis of sulfonyl fluorinated macro emulsifier for low surface energy emulsion polymerization application. Journal of Applied Polymer Science, 2017, 134, .	2.6	4
39	Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking. Journal of Zhejiang University: Science A, 2017, 18, 138-150.	2.4	11
40	High permselectivity hyperbranched polyester/polyamide ultrathin films with nanoscale heterogeneity. Journal of Materials Chemistry A, 2017, 5, 7876-7884.	10.3	63
41	A crosslinked \hat{l}^2 -cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydrate Polymers, 2017, 177, 224-231.	10.2	107
42	Structures and antifouling properties of polyvinyl chloride/poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Journal of Membrane Science, 2017, 524, 235-244.	Td (metha	acrylate)-gra 85
43	Symmetrical Permeable Membranes Consisting of Overlapped Block Copolymer Cylindrical Micelles for Nanoparticle Size Fractionation. Macromolecules, 2016, 49, 3343-3351.	4.8	27
44	Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. Journal of Membrane Science, 2016, 510, 306-313.	8.2	57
45	Incorporating hyperbranched polyester into cross-linked polyamide layer to enhance both permeability and selectivity of nanofiltration membrane. Journal of Membrane Science, 2016, 518, 141-149.	8.2	51
46	Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core–shell silica nanoparticles. Journal of Colloid and Interface Science, 2016, 468, 110-119.	9.4	44
47	Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating. Separation and Purification Technology, 2016, 157, 112-119.	7.9	37
48	Molecular separation by poly (N-vinyl imidazole) gel-filled membranes. Journal of Membrane Science, 2016, 497, 472-484.	8.2	18
49	Improving the antifouling property of poly(vinyl chloride) membranes by poly(vinyl) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 2.6	Tf 50 262
50	Poly(N,N-dimethylaminoethyl methacrylate) grafted poly(vinyl chloride)s synthesized via ATRP process and their membranes for dye separation. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1491-1502.	3.8	22
51	Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Journal of Colloid and Interface Science, 2015, 448, 380-388.	9.4	81
52	Positively-charged nanofiltration membrane formed by quaternization and cross-linking of blend PVC/P(DMA-co-MMA) precursors. Journal of Membrane Science, 2015, 492, 187-196.	8.2	56
53	lon Exchange and Antibiofouling Properties of Poly(ether sulfone) Membranes Prepared by the Surface Immobilization of Brønsted Acidic Ionic Liquids via Double-Click Reactions. Langmuir, 2015, 31, 7970-7979.	3.5	21
54	Preparation and characterization of poly (N-vinyl imidazole) gel-filled nanofiltration membranes. Journal of Membrane Science, 2015, 492, 380-391.	8.2	40

#	Article	IF	Citations
55	Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP. Journal of Materials Chemistry B, 2015, 3, 7698-7706.	5.8	48
56	Composition and properties of porous blend membranes containing tertiary amine based amphiphilic copolymers with different sequence structures. Journal of Colloid and Interface Science, 2015, 437, 124-131.	9.4	25
57	Construction of porous coating layer and electrochemical performances of the corresponding modified polyethylene separators for lithium ion batteries. Journal of Applied Polymer Science, 2014, 131, .	2.6	44
58	Route to hemocompatible polyethersulfone membranes via surface aminolysis and heparinization. Journal of Colloid and Interface Science, 2014, 422, 38-44.	9.4	34
59	Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl) Tj ETQq1 1 0.75	84314 rgE 8.2	BT / Overlock
60	Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. Journal of Membrane Science, 2014, 457, 73-81.	8.2	117
61	A facile transetherification route to polysulfone-poly(ethylene glycol) amphiphilic block copolymers with improved protein resistance. Polymer Chemistry, 2014, 5, 2836-2842.	3.9	22
62	Anti-fouling and anti-bacterial polyethersulfone membranes quaternized from the additive of poly(2-dimethylamino ethyl methacrylate) grafted SiO ₂ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 15566.	10.3	137
63	Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic–organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Advances, 2014, 4, 22501-22508.	3.6	40
64	Enhancing the Antifouling and Antimicrobial Properties of Poly(ether sulfone) Membranes by Surface Quaternization from a Reactive Poly(ether sulfone) Based Copolymer Additive. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 13952-13962.	3.7	35
65	Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive. Journal of Membrane Science, 2014, 470, 148-158.	8.2	93
66	Ionic liquids as co-solvents for zwitterionic copolymers and the preparation of poly(vinylidene) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 30
67	Effects of coagulant pH and ion strength on the dehydration and self-assembly of poly(N,) Tj ETQq1 1 0.784314 r polyethersulfone blend membranes. Journal of Membrane Science, 2014, 463, 49-57.	gBT /Over 8.2	lock 10 Tf 5
68	Effects of the extractant on the hydrophilicity and performance of highâ€density polyethylene/polyethyleneâ€∢i>bàêpoly(ethylene glycol) blend membranes prepared via a thermally induced phase separation process. Journal of Applied Polymer Science, 2013, 130, 3816-3824.	2.6	8
69	Hemocompatible and antibacterial porous membranes with heparinized copper hydroxide nanofibers as separation layer. Colloids and Surfaces B: Biointerfaces, 2013, 110, 36-44.	5.0	14
70	Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. Journal of Membrane Science, 2013, 437, 160-168.	8.2	122
71	Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. Journal of Membrane Science, 2013, 440, 40-47.	8.2	176
72	Antifouling and Antimicrobial Polymer Membranes Based on Bioinspired Polydopamine and Strong Hydrogen-Bonded Poly(<i>N</i> -vinyl pyrrolidone). ACS Applied Materials & Interfaces, 2013, 5, 12895-12904.	8.0	340

#	Article	IF	CITATIONS
73	Influences of extractant on the hydrophilicity and performances of HDPE/PEâ€∢i>b⟨li>â€PEG blend membranes prepared via thermally induced phase separation (TIPS) process. Journal of Applied Polymer Science, 2013, 130, 2680-2687.	2.6	3
74	An investigation on the antifouling ability of PVDF membranes by polyDOPA coating. Desalination and Water Treatment, 2012, 50, 22-33.	1.0	18
75	Antifouling properties of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chinese Journal of Polymer Science (English Edition), 2012, 30, 568-577.	3.8	39
76	An extending of candidate for the hydrophilic modification of polysulfone membranes from the compatibility consideration: The polyethersulfone-based amphiphilic copolymer as an example. Journal of Membrane Science, 2012, 390-391, 48-57.	8.2	43
77	A readily modified polyethersulfone with amino-substituted groups: Its amphiphilic copolymer synthesis and membrane application. Polymer, 2012, 53, 350-358.	3.8	60
78	Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chinese Journal of Polymer Science (English Edition), 2012, 30, 152-163.	3.8	82
79	Supercritical carbon dioxide assisted synthesis of amphiphilic graft copolymers based on poly(styrene-co-maleic anhydride) with methoxyl poly(ethylene glycol) side chains. Chinese Journal of Polymer Science (English Edition), 2012, 30, 173-180.	3.8	3
80	Polypropylene Glycol: The Hydrophilic Phenomena in the Modification of Polyethersulfone Membranes. Industrial & Engineering Chemistry Research, 2011, 50, 11297-11305.	3.7	17
81	Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir, 2011, 27, 14180-14187.	3.5	639
82	Surface zwitterionicalization of poly(vinylidene fluoride) porous membranes by post-reaction of the amphiphilic precursor. Journal of Membrane Science, 2011, 385-386, 57-66.	8.2	55
83	Fabrication of superhydrophilic poly(styrene-alt-maleic anhydride)/silica hybrid surfaces on poly(vinylidene fluoride) membranes. Journal of Colloid and Interface Science, 2011, 363, 676-681.	9.4	22
84	Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer. Colloids and Surfaces B: Biointerfaces, 2011, 86, 111-118.	5.0	187
85	Poly(N-isopropylacrylamide) grafted poly(vinylidene fluoride) copolymers for temperature-sensitive membranes. Journal of Membrane Science, 2011, 366, 176-183.	8.2	87
86	A novel positively charged nanofiltration membrane prepared from N,N-dimethylaminoethyl methacrylate by quaternization cross-linking. Journal of Membrane Science, 2011, 374, 33-42.	8.2	72
87	Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 2010, 364, 194-202.	8.2	315
88	F127-based multi-block copolymer additives with poly(N,N-dimethylamino-2-ethyl methacrylate) end chains: The hydrophilicity and stimuli-responsive behavior investigation in polyethersulfone membranes modification. Journal of Membrane Science, 2010, 364, 34-42.	8.2	54
89	Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes. Journal of Membrane Science, 2010, 365, 25-33.	8.2	138
90	PVDF-HFP Membrane Prepared via TIPS Process as the Matrix of Gel Electrolyte for Lithium Ion Battery. Journal of Macromolecular Science - Physics, 2010, 50, 275-290.	1.0	6

#	Article	IF	CITATIONS
91	Preparation of PVDF-HFP Microporous Membranes via the Thermally Induced Phase Separation Process. Journal of Macromolecular Science - Physics, 2009, 48, 41-54.	1.0	15
92	Amphiphilic PPESK-graft-P(PEGMA) copolymer for surface modification of PPESK membranes. Materials Chemistry and Physics, 2009, 115, 223-228.	4.0	36
93	The effects of spinning temperature on morphologies and properties of polyethersulfone hollow fiber membranes. Journal of Applied Polymer Science, 2009, 113, 1701-1709.	2.6	6
94	Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. Journal of Membrane Science, 2009, 326, 659-666.	8.2	243
95	A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 2009, 327, 244-253.	8.2	582
96	Investigation on PVDF-HFP microporous membranes prepared by TIPS process and their application as polymer electrolytes for lithium ion batteries. Ionics, 2009, 15, 469-476.	2.4	22
97	Surface modification of PVDF porous membranes via poly(DOPA) coating and heparin immobilization. Colloids and Surfaces B: Biointerfaces, 2009, 69, 152-155.	5.0	175
98	Amphiphilic ABA copolymers used for surface modification of polysulfone membranes, Part 1: Molecular design, synthesis, and characterization. Polymer, 2008, 49, 3256-3264.	3.8	67
99	Tethering hydrophilic polymer brushes onto PPESK membranes via surface-initiated atom transfer radical polymerization. Journal of Membrane Science, 2008, 320, 407-415.	8.2	73
100	Grafting of styrene/maleic anhydride copolymer onto PVDF membrane by supercritical carbon dioxide: Preparation, characterization and biocompatibility. Journal of Supercritical Fluids, 2008, 45, 374-383.	3.2	45
101	Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes. European Polymer Journal, 2007, 43, 1383-1393.	5.4	21
102	Preparation and characterization of improved fouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEG copolymers as additives. Journal of Membrane Science, 2007, 294, 196-206.	8.2	52
103	Effects of extra amine sources on the permeability and separation properties of nanofiltration membranes prepared by polydopamine deposition., 0, 147, 10-19.		1