
Antonio J Meléndez-MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139114/publications.pdf Version: 2024-02-01

Αντονίο J

#	Article	IF	CITATIONS
1	A comprehensive review on carotenoids in foods and feeds: <i>status quo</i> , applications, patents, and research needs. Critical Reviews in Food Science and Nutrition, 2022, 62, 1999-2049.	5.4	132
2	Effect of regulated deficit irrigation on commercial quality parameters, carotenoids, phenolics and sugars of the black cherry tomato (Solanum lycopersicum L.) ʽSunchocola'. Journal of Food Composition and Analysis, 2022, 105, 104220.	1.9	14
3	Nutricosmetics: Vanity Can Help Increase the Consumption of Health-Promoting Foods in the Sustainability Era. ACS Food Science & Technology, 2022, 2, 474-475.	1.3	3
4	Interlaboratory exercise for the analysis of carotenoids and related compounds in dried mango fruit (Mangifera indica L.). Journal of Food Composition and Analysis, 2022, 111, 104616.	1.9	0
5	From carotenoid intake to carotenoid blood and tissue concentrations – implications for dietary intake recommendations. Nutrition Reviews, 2021, 79, 544-573.	2.6	113
6	Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change. Annual Review of Food Science and Technology, 2021, 12, 433-460.	5.1	72
7	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	6.6	84
8	European Database of Carotenoid Levels in Foods. Factors Affecting Carotenoid Content. Foods, 2021, 10, 912.	1.9	30
9	Distribution of Polyphenolic and Isoprenoid Compounds and Biological Activity Differences between in the Fruit Skin + Pulp, Seeds, and Leaves of New Biotypes of Elaeagnusmultiflora Thunb. Antioxidants, 2021, 10, 849.	2.2	8
10	The Complex ABCG5/ABCG8 Regulates Vitamin D Absorption Rate and Contributes to its Efflux from the Intestine. Molecular Nutrition and Food Research, 2021, 65, e2100617.	1.5	5
11	The colourless carotenoids phytoene and phytofluene: sources, consumption, bioavailability and health effects. Current Opinion in Food Science, 2021, 41, 201-209.	4.1	19
12	The undercover colorless carotenoids phytoene and phytofluene: Importance in agro-food and health in the Green Deal era and possibilities for innovation. Trends in Food Science and Technology, 2021, 116, 255-263.	7.8	18
13	Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers. Foods, 2021, 10, 2625.	1.9	8
14	Assessment of Food Sources and the Intake of the Colourless Carotenoids Phytoene and Phytofluene in Spain. Nutrients, 2021, 13, 4436.	1.7	15
15	Characterization of Andean Blueberry in Bioactive Compounds, Evaluation of Biological Properties, and In Vitro Bioaccessibility. Foods, 2020, 9, 1483.	1.9	17
16	In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants, 2020, 9, 436.	2.2	8
17	Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, 2020, 331, 127259.	4.2	46
18	The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science and Technology, 2020, 99, 389-401.	7.8	86

#	Article	IF	CITATIONS
19	High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 2020, 262, 121325.	4.6	33
20	Applications of Visible Spectroscopy and Color Measurements in the Assessments of Carotenoid Levels in Foods. Methods in Molecular Biology, 2020, 2083, 103-116.	0.4	3
21	Free carotenoids and carotenoids esters composition in Spanish orange and mandarin juices from diverse varieties. Food Chemistry, 2019, 300, 125139.	4.2	16
22	Comparison of the bioavailability and intestinal absorption sites of phytoene, phytofluene, lycopene and β-carotene. Food Chemistry, 2019, 300, 125232.	4.2	32
23	Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chemistry, 2019, 299, 125112.	4.2	70
24	Simple Fast Quantification of Cholecalciferol, 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D in Adipose Tissue Using LC-HRMS/MS. Nutrients, 2019, 11, 1977.	1.7	14
25	The gut: a regulatory hall governing fat-soluble micronutrient absorption. American Journal of Clinical Nutrition, 2019, 110, 1045-1046.	2.2	5
26	Bioaccessibility of carotenoids, vitamin A and α-tocopherol, from commercial milk-fruit juice beverages: Contribution to the recommended daily intake. Journal of Food Composition and Analysis, 2019, 78, 24-32.	1.9	22
27	An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agroâ€Food, Nutrition, Health, and Disease. Molecular Nutrition and Food Research, 2019, 63, e1801045.	1.5	151
28	Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients, 2019, 11, 1093.	1.7	117
29	Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand?. Nutrients, 2019, 11, 838.	1.7	130
30	Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends in Food Science and Technology, 2019, 88, 220-227.	7.8	109
31	ABCB1 (Pâ€glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB Journal, 2019, 33, 2084-2094.	0.2	25
32	Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by Rapid Resolution Liquid Chromatography. Journal of Chromatography A, 2019, 1583, 63-72.	1.8	28
33	From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends in Food Science and Technology, 2019, 83, 63-77.	7.8	62
34	Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agricultural Water Management, 2019, 213, 212-221.	2.4	46
35	Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chemistry, 2019, 277, 480-489.	4.2	53
36	CHAPTER 1. Structures, Nomenclature and General Chemistry of Carotenoids and Their Esters. Food Chemistry, Function and Analysis, 2019, , 1-50.	0.1	18

#	Article	IF	CITATIONS
37	A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 2018, 70, 62-93.	5.3	634
38	Comprehensive Database of Carotenoid Contents in Ibero-American Foods. A Valuable Tool in the Context of Functional Foods and the Establishment of Recommended Intakes of Bioactives. Journal of Agricultural and Food Chemistry, 2018, 66, 5055-5107.	2.4	76
39	The colourless carotenoids phytoene and phytofluene: From dietary sources to their usefulness for the functional foods and nutricosmetics industries. Journal of Food Composition and Analysis, 2018, 67, 91-103.	1.9	67
40	Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles. Journal of Functional Foods, 2018, 46, 38-47.	1.6	33
41	Isoprenoids composition and colour to differentiate virgin olive oils from a specific mill. LWT - Food Science and Technology, 2018, 89, 18-23.	2.5	7
42	Changes in phytochemical composition, bioactivity and <i>in vitro</i> digestibility of guayusa leaves (<i>llex guayusa</i> Loes.) in different ripening stages. Journal of the Science of Food and Agriculture, 2018, 98, 1927-1934.	1.7	19
43	Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chemistry, 2018, 240, 870-884.	4.2	51
44	Biological Active Ecuadorian Mango â€~Tommy Atkins' Ingredients—An Opportunity to Reduce Agrowaste. Nutrients, 2018, 10, 1138.	1.7	30
45	Comparative study of the bioaccessibility of the colorless carotenoids phytoene and phytofluene in powders and pulps of tomato: microstructural analysis and effect of addition of sunflower oil. Food and Function, 2018, 9, 5016-5023.	2.1	16
46	Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Cacoâ€2 Cells, as Compared to Lycopene, and SRâ€BI is Involved in their Cellular Uptake. Molecular Nutrition and Food Research, 2018, 62, e1800703.	1.5	37
47	Extraction of carotenoids from cantaloupe waste and determination of its mineral composition. Food Research International, 2018, 111, 391-398.	2.9	47
48	Preliminary Data on the Safety of Phytoene- and Phytofluene-Rich Products for Human Use including Topical Application. Journal of Toxicology, 2018, 2018, 1-8.	1.4	14
49	Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chemistry, 2017, 229, 304-311.	4.2	63
50	Guayusa (<i>llex guayusa</i> L.) new tea: phenolic and carotenoid composition and antioxidant capacity. Journal of the Science of Food and Agriculture, 2017, 97, 3929-3936.	1.7	29
51	Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Research International, 2017, 96, 72-83.	2.9	46
52	Effect of the fruit position on the cluster on fruit quality, carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Research International, 2017, 100, 804-813.	2.9	35
53	Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity. Molecules, 2017, 22, 85.	1.7	21
54	Comparison of the Micellar Incorporation and the Intestinal Cell Uptake of Cholecalciferol, 25-Hydroxycholecalciferol and 1-1±-Hydroxycholecalciferol. Nutrients, 2017, 9, 1152.	1.7	17

#	Article	IF	CITATIONS
55	Multivariate analyses of a wide selection of orange varieties based on carotenoid contents, color and in vitro antioxidant capacity. Food Research International, 2016, 90, 194-204.	2.9	23
56	A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men. Journal of Nutrition, 2016, 146, 2421-2428.	1.3	17
57	Pinoresinol of olive oil decreases vitamin D intestinal absorption. Food Chemistry, 2016, 206, 234-238.	4.2	14
58	Lycopene, oxidative cleavage derivatives and antiradical activity. Computational and Theoretical Chemistry, 2016, 1077, 92-98.	1.1	13
59	InÂvitro antioxidant capacity of tomato products: Relationships with their lycopene, phytoene, phytoene, phytofluene and alpha-tocopherol contents, evaluation of interactions and correlation with reflectance measurements. LWT - Food Science and Technology, 2016, 65, 718-724.	2.5	24
60	Carotenoids and fat-soluble vitamins in horse tissues: a comparison with cattle. Animal, 2015, 9, 1230-1238.	1.3	11
61	Carotenoid and Vitamin A Contents in Biological Fluids and Tissues of Animals as an Effect of the Diet: A Review. Food Reviews International, 2015, 31, 319-340.	4.3	42
62	A comprehensive review on the colorless carotenoids phytoene and phytofluene. Archives of Biochemistry and Biophysics, 2015, 572, 188-200.	1.4	147
63	Hydrophilic antioxidant compounds in orange juice from different fruit cultivars: Composition and antioxidant activity evaluated by chemical and cellular based (Saccharomyces cerevisiae) assays. Journal of Food Composition and Analysis, 2015, 37, 1-10.	1.9	41
64	Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chemistry, 2015, 172, 155-160.	4.2	148
65	Study of the Time-Course of <i>cis/trans </i> (<i>Z</i> / <i>E</i>) Isomerization of Lycopene, Phytoene, and Phytofluene from Tomato. Journal of Agricultural and Food Chemistry, 2014, 62, 12399-12406.	2.4	54
66	Development and validation of a rapid resolution liquid chromatography method for the screening of dietary plant isoprenoids: Carotenoids, tocopherols and chlorophylls. Journal of Chromatography A, 2014, 1370, 162-170.	1.8	48
67	Effect of pasture and concentrate diets on concentrations of carotenoids, vitamin A and vitamin E in plasma and adipose tissue of lambs. Journal of Food Composition and Analysis, 2014, 36, 59-65.	1.9	17
68	Clusterâ€determinant 36 (CD36) impacts on vitamin E postprandial response. Molecular Nutrition and Food Research, 2014, 58, 2297-2306.	1.5	35
69	Intestinal Scavenger Receptors Are Involved in Vitamin K1 Absorption. Journal of Biological Chemistry, 2014, 289, 30743-30752.	1.6	58
70	Free Radical Scavenging Properties of Phytofluene and Phytoene Isomers as Compared to Lycopene: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2014, 118, 9819-9825.	1.2	52
71	\hat{l}^2 -Lactoglobulin as a Vector for \hat{l}^2 -Carotene Food Fortification. Journal of Agricultural and Food Chemistry, 2014, 62, 5916-5924.	2.4	24
72	Effect of different carotenoid-containing diets on the vitamin A levels and colour parameters in Iberian pigs' tissues: utility as biomarkers of traceability. Meat Science, 2014, 98, 187-192.	2.7	11

#	Article	IF	CITATIONS
73	Changes in antioxidant capacity and colour associated with the formation of β-carotene epoxides and oxidative cleavage derivatives. Food Chemistry, 2014, 147, 160-169.	4.2	19
74	Callus culture development of two varieties of Tagetes erecta and carotenoid production. Electronic Journal of Biotechnology, 2014, 17, 107-113.	1.2	20
75	Analysis of Carotenoids and Tocopherols in Plant Matrices and Assessment of Their In Vitro Antioxidant Capacity. Methods in Molecular Biology, 2014, 1153, 77-97.	0.4	6
76	Spectroradiometry vs. image analysis in colour measurement in juices from different orange and mandarin varieties. Optica Pura Y Aplicada, 2014, 47, 139-144.	0.0	6
77	A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chemistry, 2013, 138, 1341-1350.	4.2	102
78	Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Research International, 2013, 50, 111-120.	2.9	45
79	Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. Journal of Nutritional Biochemistry, 2013, 24, 1751-1757.	1.9	61
80	Bioaccessibility, antioxidant activity and colour of carotenoids in ultrafrozen orange juices: Influence of thawing conditions. LWT - Food Science and Technology, 2013, 53, 458-463.	2.5	36
81	Instrumental assessment of the sensory quality of juices. , 2013, , 565-610e.		5
82	Native carotenoids composition of some tropical fruits. Food Chemistry, 2013, 140, 825-836.	4.2	85
83	Industrial orange juice debittering: Impact on bioactive compounds and nutritional value. Journal of Food Engineering, 2013, 116, 155-161.	2.7	26
84	Xanthophyll cycle-related photoprotective mechanism in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa under normal and stressful hypersaline conditions. Aquatic Botany, 2013, 109, 14-24.	0.8	33
85	CD36 and SR-BI Are Involved in Cellular Uptake of Provitamin A Carotenoids by Caco-2 and HEK Cells, and Some of Their Genetic Variants Are Associated with Plasma Concentrations of These Micronutrients in Humans. Journal of Nutrition, 2013, 143, 448-456.	1.3	109
86	Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins. Nutrients, 2013, 5, 3563-3581.	1.7	222
87	Effect of tomato extract supplementation against high-fat diet-induced hepatic lesions. Hepatobiliary Surgery and Nutrition, 2013, 2, 198-208.	0.7	17
88	Respective contributions of intestinal Niemann-Pick C1-like 1 and scavenger receptor class B type I to cholesterol and tocopherol uptake: <i>in vivov</i> . <i>in vitro</i> studies. British Journal of Nutrition, 2012, 107, 1296-1304.	1.2	46
89	Effect of Orange Juice's Processing on the Color, Particle Size, and Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry, 2012, 60, 1447-1455.	2.4	109
90	EFFECTS OF FARMING PRACTICES ON THE QUALITY OF ULTRAâ€FROZEN MANDARIN JUICE. Journal of Food Process Engineering, 2012, 35, 940-949.	1.5	5

#	Article	IF	CITATIONS
91	Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q10 and carotenoids in complex samples. Food Chemistry, 2012, 134, 2560-2564.	4.2	79
92	InÂ ⁻ uence of Di•erent Backgrounds on the Instrumental Color SpeciÂ e ation of Orange Juices. , 2012, , 168-179.		1
93	Effects of Salinity Stress on Carotenoids, Anthocyanins, and Color of Diverse Tomato Genotypes. Journal of Agricultural and Food Chemistry, 2011, 59, 11676-11682.	2.4	145
94	Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Progress in Lipid Research, 2011, 50, 388-402.	5.3	193
95	Effects of βâ€cyclodextrin addition and farming type on vitamin C, antioxidant activity, carotenoids profile, and sensory analysis in pasteurised orange juices. International Journal of Food Science and Technology, 2011, 46, 2182-2190.	1.3	16
96	Application of tristimulus colorimetry to evaluate colour changes during the ripening of Colombian guava (<i>Psidium guajava</i> L.) varieties with different carotenoid pattern. International Journal of Food Science and Technology, 2011, 46, 840-848.	1.3	16
97	VISUAL AND INSTRUMENTAL EVALUATION OF ORANGE JUICE COLOR: A CONSUMERS' PREFERENCE STUDY. Journal of Sensory Studies, 2011, 26, 436-444.	0.8	61
98	Color of orange juices in relation to their carotenoid contents as assessed from different spectroscopic data. Journal of Food Composition and Analysis, 2011, 24, 837-844.	1.9	29
99	Plastid analysis of pigmented undifferentiated cells of marigold Tagetes erecta L. by transmission electron microscopy. In Vitro Cellular and Developmental Biology - Plant, 2011, 47, 596-603.	0.9	12
100	Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition and Food Research, 2011, 55, 691-702.	1.5	161
101	Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Molecular Nutrition and Food Research, 2011, 55, S303-11.	1.5	55
102	A novel and enhanced approach for the assessment of the total carotenoid content of foods based on multipoint spectroscopic measurements. Food Chemistry, 2011, 126, 1862-1869.	4.2	13
103	Effect of increased acidity on the carotenoid pattern and colour of orange juice. European Food Research and Technology, 2010, 230, 527-532.	1.6	14
104	The Color of Olive Oils: The Pigments and Their Likely Health Benefits and Visual and Instrumental Methods of Analysis. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 278-291.	5.9	83
105	Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity. Phytochemistry, 2010, 71, 1104-1114.	1.4	64
106	Influence of the refrigeration technique on the colour and phenolic composition of syrah red wines obtained by pre-fermentative cold maceration. Food Chemistry, 2010, 118, 377-383.	4.2	61
107	Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chemistry, 2010, 122, 167-172.	4.2	96
108	Study of the influence of carotenoid structure and individual carotenoids in the qualitative and quantitative attributes of orange juice colour. Food Research International, 2010, 43, 1289-1296.	2.9	42

#	Article	IF	CITATIONS
109	Tomato extract supplementation results in a preferential accumulation of hepatic phytoene and phytofluene and decreased plasma total cholesterol levels in high fat diet fed rats. FASEB Journal, 2010, 24, 539.2.	0.2	2
110	ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of α- and γ-tocopherol but not in that of retinyl palmitate in mice. American Journal of Clinical Nutrition, 2009, 89, 177-184.	2.2	71
111	Separation of structural, geometrical and optical isomers of epoxycarotenoids using triacontylâ€bonded stationary phases. Journal of Separation Science, 2009, 32, 1838-1848.	1.3	18
112	Effect of storage on the phenolic content, volatile composition and colour of white wines from the varieties Zalema and Colombard. Food Chemistry, 2009, 113, 530-537.	4.2	72
113	Effect of ascorbic acid on deterioration of carotenoids and colour in ultrafrozen orange juice. Journal of Food Composition and Analysis, 2009, 22, 295-302.	1.9	30
114	Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. British Journal of Nutrition, 2009, 101, 680-687.	1.2	57
115	Optimization of olive-fruit paste production using a methodological proposal based on a sensory and objective color analysis. Grasas Y Aceites, 2009, 60, 396-404.	0.3	6
116	Does the carotenoid neoxanthin occur in orange juice?. Food Chemistry, 2008, 107, 49-54.	4.2	15
117	The complex carotenoid pattern of orange juices from concentrate. Food Chemistry, 2008, 109, 546-553.	4.2	76
118	Comparison of the effectiveness of solid-phase and ultrasound-mediated liquid–liquid extractions to determine the volatile compounds of wine. Talanta, 2008, 76, 929-935.	2.9	36
119	A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (II): CIELUV and CIELAB uniform colour spaces. Food Research International, 2008, 41, 513-521.	2.9	42
120	A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I): CIEXYZ non-uniform colour space. Food Research International, 2008, 41, 505-512.	2.9	55
121	Multivariate Statistical Analysis of the Colorâ^'Anthocyanin Relationships in Different Soilless-Grown Strawberry Genotypes. Journal of Agricultural and Food Chemistry, 2008, 56, 2735-2741.	2.4	22
122	Lycopene Absorption in Human Intestinal Cells and in Mice Involves Scavenger Receptor Class B Type I but Not Niemann-Pick C1-Like 1. Journal of Nutrition, 2008, 138, 1432-1436.	1.3	118
123	Carotenoids, Color, and Ascorbic Acid Content of a Novel Frozen-Marketed Orange Juice. Journal of Agricultural and Food Chemistry, 2007, 55, 1347-1355.	2.4	71
124	Rapid Assessment of Vitamin A Activity through Objective Color Measurements for the Quality Control of Orange Juices with Diverse Carotenoid Profiles. Journal of Agricultural and Food Chemistry, 2007, 55, 2808-2815.	2.4	37
125	Assessment of the Differences in the Phenolic Composition of Five Strawberry Cultivars (Fragaria×ananassaDuch.) Grown in Two Different Soilless Systems. Journal of Agricultural and Food Chemistry, 2007, 55, 1846-1852.	2.4	48
126	Relationship between the colour and the chemical structure of carotenoid pigments. Food Chemistry, 2007, 101, 1145-1150.	4.2	198

#	Article	IF	CITATIONS
127	Geometrical isomers of violaxanthin in orange juice. Food Chemistry, 2007, 104, 169-175.	4.2	51
128	Provitamin A carotenoids and ascorbic acid contents of the different types of orange juices marketed in Spain. Food Chemistry, 2007, 101, 177-184.	4.2	53
129	Review: Analysis of carotenoids in orange juice. Journal of Food Composition and Analysis, 2007, 20, 638-649.	1.9	126
130	Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. Journal of Agricultural and Food Chemistry, 2006, 54, 8749-8755.	2.4	371
131	HPLC analysis of geometrical isomers of lutein epoxide isolated from dandelion (Taraxacum officinale) Tj ETQq1 1	0,784314 1.4	l rgBT /Over
132	Influence of white reference measurement and background on the color specification of orange juices by means of diffuse reflectance spectrophotometry. Journal of AOAC INTERNATIONAL, 2006, 89, 452-7.	0.7	3
133	Instrumental measurement of orange juice colour: a review. Journal of the Science of Food and Agriculture, 2005, 85, 894-901.	1.7	54
134	Identification of Isolutein (Lutein Epoxide) ascis-Antheraxanthin in Orange Juice. Journal of Agricultural and Food Chemistry, 2005, 53, 9369-9373.	2.4	48
135	Correlation between visual and instrumental colour measurements of orange juice dilutions: effect of the background. Food Quality and Preference, 2005, 16, 471-478.	2.3	42
136	Color and carotenoid profile of Spanish Valencia late ultrafrozen orange juices. Food Research International, 2005, 38, 931-936.	2.9	38
137	Identification of Zeinoxanthin in Orange Juices. Journal of Agricultural and Food Chemistry, 2005, 53, 6362-6367.	2.4	36
138	A Routine High-Performance Liquid Chromatography Method for Carotenoid Determination In Ultrafrozen Orange Juices. Journal of Agricultural and Food Chemistry, 2003, 51, 4219-4224.	2.4	45
139	Application of Tristimulus Colorimetry To Estimate the Carotenoids Content in Ultrafrozen Orange Juices. Journal of Agricultural and Food Chemistry, 2003, 51, 7266-7270.	2.4	108