List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138756/publications.pdf Version: 2024-02-01

POHAM PARIER

#	Article	IF	CITATIONS
1	Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Materials & Design, 2010, 31, 790-795.	5.1	246
2	On the modeling of carbon nanotubes: A critical review. Composites Part B: Engineering, 2014, 56, 435-449.	12.0	194
3	Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites Part B: Engineering, 2015, 68, 446-464.	12.0	187
4	Simulation of fatigue failure in a full composite wind turbine blade. Composite Structures, 2006, 74, 332-342.	5.8	176
5	A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mechanics of Composite Materials, 2010, 46, 155-172.	1.4	176
6	On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Composite Structures, 2010, 92, 647-652.	5.8	165
7	Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Composite Structures, 2010, 92, 2415-2420.	5.8	123
8	Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber. Mechanics Research Communications, 2010, 37, 235-240.	1.8	108
9	On the mechanical performance of glass-fibre-reinforced thermosetting-resin pipes: A review. Composite Structures, 2016, 143, 151-164.	5.8	103
10	Stochastic prediction of burst pressure in composite pressure vessels. Composite Structures, 2018, 185, 573-583.	5.8	98
11	Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 2014, 85, 295-305.	3.0	94
12	Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites. Composite Structures, 2013, 97, 304-309.	5.8	88
13	Experimental and theoretical investigations on the failure of filament wound GRP pipes. Composites Part B: Engineering, 2013, 45, 257-267.	12.0	80
14	Stochastic multi-scale modeling of CNT/polymer composites. Computational Materials Science, 2010, 50, 437-446.	3.0	75
15	Influence of CNT functionalization on the interphase region between CNT and polymer. Computational Materials Science, 2015, 96, 573-578.	3.0	74
16	Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes. Computational Materials Science, 2015, 96, 579-588.	3.0	64
17	Investigating structural failure of a filament-wound composite tube subjected to internal pressure: Experimental and theoretical evaluation. Polymer Testing, 2018, 67, 322-330.	4.8	60
18	Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling. Computational Materials Science, 2012, 63, 261-268.	3.0	55

#	Article	IF	CITATIONS
19	Stochastic fatigue analysis of glass fiber reinforced polymer pipes. Composite Structures, 2017, 167, 96-102.	5.8	55
20	Simulation of aeroelastic behavior in a composite wind turbine blade. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151, 60-69.	3.9	54
21	Simulation of functional failure in GRP mortar pipes. Composite Structures, 2014, 113, 155-163.	5.8	51
22	Evaluating mechanical performance of GFRP pipes subjected to transverse loading. Thin-Walled Structures, 2018, 131, 347-359.	5.3	50
23	Mechanical Properties of Nanoclay and Nanoclay Reinforced Polymers: A Review. Polymer Composites, 2019, 40, 431-445.	4.6	50
24	Estimating Young's modulus of graphene/polymer composites using stochastic multi-scale modeling. Composites Part B: Engineering, 2019, 173, 106842.	12.0	49
25	Simulation of the long-term hydrostatic tests on Glass Fiber Reinforced Plastic pipes. Composite Structures, 2016, 136, 56-63.	5.8	48
26	Characterizing nanotube–polymer interaction using molecular dynamics simulation. Computational Materials Science, 2016, 112, 356-363.	3.0	46
27	Stochastic multi-scale modeling of randomly grown CNTs on carbon fiber. Mechanics of Materials, 2017, 106, 1-7.	3.2	42
28	Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using non-linear potentials. Composite Structures, 2012, 94, 2460-2464.	5.8	41
29	Predicting mechanical properties of nanoclay/polymer composites using stochastic approach. Composites Part B: Engineering, 2018, 152, 31-42.	12.0	41
30	Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique. Mechanics of Materials, 2014, 78, 74-84.	3.2	38
31	Theoretical modeling of fatigue phenomenon in composite pipes. Composite Structures, 2017, 161, 256-263.	5.8	38
32	Stochastic analysis of functional failure pressures in glass fiber reinforced polyester pipes. Materials & Design, 2015, 67, 422-427.	5.1	37
33	Theoretical and numerical analyses of composite cylinders subjected to the low velocity impact. Composite Structures, 2019, 226, 111230.	5.8	36
34	Characterizing delamination toughness of laminated composites containing carbon nanotubes: Experimental study and stochastic multi-scale modeling. Composites Science and Technology, 2021, 201, 108487.	7.8	35
35	Modeling creep in polymeric composites: Developing a general integrated procedure. International Journal of Mechanical Sciences, 2015, 99, 112-120.	6.7	34
36	Evaluating the influence of defects on the young's modulus of carbon nanotubes using stochastic modeling. Materials Research, 2014, 17, 758-766.	1.3	32

#	Article	IF	CITATIONS
37	On The Stiffness Prediction of GFRP Pipes Subjected to Transverse Loading. KSCE Journal of Civil Engineering, 2018, 22, 4564-4572.	1.9	32
38	Developing a micro-macromechanical approach for evaluating long-term creep in composite cylinders. Thin-Walled Structures, 2020, 151, 106714.	5.3	32
39	Apparent hoop tensile strength prediction of glass fiber-reinforced polyester pipes. Journal of Composite Materials, 2013, 47, 1377-1386.	2.4	31
40	Evaluating long-term performance of Class Fiber Reinforced Plastic pipes subjected to internal pressure. Construction and Building Materials, 2016, 122, 694-701.	7.2	30
41	Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber. International Journal of Mechanics and Materials in Design, 2018, 14, 37-50.	3.0	30
42	Predicting Young's modulus of agglomerated graphene/polymer using multi-scale modeling. Composite Structures, 2020, 245, 112324.	5.8	29
43	The influence of production inconsistencies on the functional failure of GRP pipes. Steel and Composite Structures, 2015, 19, 1369-1379.	1.3	29
44	Influence of non-bonded interphase on crack driving force in carbon nanotube reinforced polymer. Computational Materials Science, 2012, 56, 25-28.	3.0	28
45	Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 42-48.	2.7	28
46	Challenges of the Modeling Methods for Investigating the Interaction between the CNT and the Surrounding Polymer. Advances in Materials Science and Engineering, 2013, 2013, 1-10.	1.8	27
47	Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites. Iranian Polymer Journal (English Edition), 2012, 21, 397-402.	2.4	26
48	Theoretical study of failure in composite pressure vessels subjected to low-velocity impact and internal pressure. Frontiers of Structural and Civil Engineering, 2020, 14, 1349-1358.	2.9	26
49	Numerical and Experimental Analyses of the Hoop Tensile Strength of Filament-Wound Composite Tubes. Mechanics of Composite Materials, 2020, 56, 423-436.	1.4	25
50	Investigating the influence of bonded and non-bonded interactions on the interfacial bonding between carbon nanotube and polymer. Composite Structures, 2020, 238, 111996.	5.8	25
51	A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method. Mechanics of Composite Materials, 2013, 49, 325-332.	1.4	24
52	Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion. Strength of Materials, 2013, 45, 378-385.	0.5	20
53	Investigating interaction between CNT and polymer using cohesive zone model. Polymer Composites, 2018, 39, 3903-3911.	4.6	19
54	Failure analysis of a composite wind turbine blade at the adhesive joint of the trailing edge. Engineering Failure Analysis, 2021, 121, 105148.	4.0	19

#	Article	IF	CITATIONS
55	Analyzing the long-term creep behavior of composite pipes: Developing an alternative scenario of short-term multi-stage loading test. Composite Structures, 2020, 254, 112868.	5.8	18
56	Predicting the strength of carbon nanotube reinforced polymers using stochastic bottom-up modeling. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	18
57	Stochastic failure analysis of composite pipes subjected to random excitation. Construction and Building Materials, 2019, 224, 950-961.	7.2	17
58	Fatigue analysis of a composite ring: Experimental and theoretical investigations. Journal of Composite Materials, 2020, 54, 4011-4024.	2.4	16
59	A novel recursive multi-scale modeling for predicting the burst pressure of filament wound composite pressure vessels. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	15
60	The influence of material properties on the aeroelastic behavior of a composite wind turbine blade. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	14
61	The influence of fiber-crack angle on the crack tip parameters in orthotropic materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 418-431.	2.1	14
62	Developing a homogenization approach for estimation of in-plan effective elastic moduli of hexagonal honeycombs. Engineering Analysis With Boundary Elements, 2020, 117, 202-211.	3.7	14
63	Experimental study on the effect of hygrothermal environments combined with the sustained mechanical loads on the strength of composite rings. Composite Structures, 2021, 258, 113397.	5.8	14
64	Experimental and Theoretical Investigations of Creep on a Composite Pipe under Compressive Transverse Loading. Fibers and Polymers, 2021, 22, 222-230.	2.1	14
65	Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse loading using cohesive zone method. Frontiers of Structural and Civil Engineering, 2019, 13, 1316-1323.	2.9	12
66	The influence of hygrothermal environments on the stress concentration in unidirectional composite lamina. Mechanics of Materials, 2019, 129, 332-340.	3.2	11
67	A Study on Equivalent Spherical Structure of Buckyball-C 60 Based on Continuum Shell Model. Latin American Journal of Solids and Structures, 2016, 13, 1016-1029.	1.0	10
68	A study on nonlinear vibration behavior of CNT-based representative volume element. Aerospace Science and Technology, 2016, 55, 272-281.	4.8	10
69	A cohesive zone model for predicting the initiation of Mode II delamination in composites under cyclic loading. Journal of Reinforced Plastics and Composites, 2021, 40, 179-192.	3.1	10
70	Experimental investigation of graphene nanoplatelets effect on the fatigue behavior of basalt/epoxy composite pressure vessels. Thin-Walled Structures, 2022, 171, 108672.	5.3	10
71	A study on fracture behavior of semi-elliptical 3D crack in clay-polymer nanocomposites considering interfacial debonding. Engineering Fracture Mechanics, 2019, 209, 245-259.	4.3	9
72	3D stress analysis of generally laminated piezoelectric plates with electromechanical coupling effects. Applied Mathematical Modelling, 2019, 74, 258-279.	4.2	9

#	Article	IF	CITATIONS
73	Determining in-plane material properties of square core cellular materials using computational homogenization technique. Engineering With Computers, 2023, 39, 373-386.	6.1	9
74	Estimating the burst pressure of a filament wound composite pressure vessel using two-scale and multi-scale analyses. Mechanics of Advanced Materials and Structures, 2023, 30, 2668-2683.	2.6	9
75	Transition angle, a novel concept for predicting the failure mode in orthotropic materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 2157-2164.	2.1	8
76	Numerical investigation of the effect of moisture and impurity on long-term creep behavior of polymer composite pipes. International Journal of Pressure Vessels and Piping, 2021, 193, 104456.	2.6	8
77	The Influence of CNT Contents on the Electrical and Electromagnetic Properties of CNT/Vinylester. Journal of Electronic Materials, 2014, 43, 3477-3485.	2.2	7
78	Molecular dynamics simulation of defected carbon nanotubes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 654-662.	1.1	7
79	Aeroelastic investigation of a composite wind turbine blade. Wind and Structures, an International Journal, 2013, 17, 671-680.	0.8	7
80	Carbon Nanotubes Processing. , 2018, , 41-59.		4
81	Bending Analysis of Molded Composite Grating Panels: Theoretical and Experimental Investigations. Fibers and Polymers, 2021, 22, 1653-1663.	2.1	4
82	Multi-scale Modeling of Polymeric Composites Including Nanoporous Fillers of Milled Anodic Alumina. Arabian Journal for Science and Engineering, 2022, 47, 8189-8198.	3.0	4
83	Prediction of Mechanical Properties of CNT Based Composites Using Multi-Scale Modeling and Stochastic Analysis. Springer Series in Materials Science, 2014, , 201-238.	0.6	4
84	Fatigue life prediction of wind turbine rotor blades manufactured from composites. , 2010, , 505-537.		3
85	Dental composites with strength after aging improved by using anodic nanoporous fillers: experimental results, modeling, and simulations. Engineering With Computers, 2023, 39, 387-398.	6.1	3
86	Filament wound pipes optimization platform development: A methodological approach. Composite Structures, 2022, 297, 115972.	5.8	3
87	Stochastic Modeling of CNT-Grown Fibers. , 2018, , 521-540.		2
88	A hysteresis cohesive approach for predicting mixed-mode delamination onset of composite laminates under cyclic loading: Part I, model development. Composite Structures, 2021, 277, 114667.	5.8	2
89	A hysteresis cohesive approach for predicting mixed-mode delamination onset of composite laminates under cyclic loading: Part II, numerical and experimental analyses. Composite Structures, 2021, 277, 114668.	5.8	2
90	Advances in Characterization and Modeling of Nanoreinforced Composites. Journal of Nanomaterials, 2016, 2016, 1-1.	2.7	1

#	Article	IF	CITATIONS
91	Stochastic Multiscale Modeling of CNT/Polymer. , 2018, , 503-520.		1
92	Modeling, Characterization, and Processing of Advanced Composites. Advances in Materials Science and Engineering, 2013, 2013, 1-2.	1.8	0
93	On the Mechanical Properties of Functionalized CNT Reinforced Polymer. , 2015, , 610-627.		0
94	Determination of Stochastic Properties of Carbon Nanotube-Epoxy Composites. , 0, , .		0