List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/313865/publications.pdf Version: 2024-02-01

HEINZ DITSCH

#	Article	lF	CITATIONS
1	LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics, 2006, 38, 453-482.	25.0	872
2	An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combustion and Flame, 2008, 154, 67-81.	5.2	608
3	High order conservative finite difference scheme for variable density low Mach number turbulent flows. Journal of Computational Physics, 2008, 227, 7125-7159.	3.8	505
4	Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame, 2009, 156, 588-607.	5.2	406
5	Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Physics of Fluids, 2000, 12, 2541.	4.0	389
6	An accurate conservative level set/ghost fluid method for simulating turbulent atomization. Journal of Computational Physics, 2008, 227, 8395-8416.	3.8	327
7	A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects. Combustion and Flame, 1998, 114, 26-40.	5.2	324
8	A consistent chemical mechanism for oxidation of substituted aromatic species. Combustion and Flame, 2010, 157, 1879-1898.	5.2	293
9	Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combustion and Flame, 2009, 156, 292-301.	5.2	288
10	Structural group analysis for soot reduction tendency of oxygenated fuels. Combustion and Flame, 2008, 154, 191-205.	5.2	277
11	Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combustion and Flame, 2015, 162, 1623-1637.	5.2	276
12	Extinction and autoignition of n-heptane in counterflow configuration. Proceedings of the Combustion Institute, 2000, 28, 2029-2037.	3.9	274
13	Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels. , 0, , .		255
14	Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combustion and Flame, 2004, 137, 320-339.	5.2	254
15	Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proceedings of the Combustion Institute, 2002, 29, 2001-2008.	3.9	243
16	Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels. , 0, , .		236
17	Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Physics of Fluids, 2008, 20, .	4.0	232
18	Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames. Proceedings of the Combustion Institute, 1998, 27, 1057-1064.	0.3	225

#	Article	IF	CITATIONS
19	Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie - International Edition, 2017, 56, 5412-5452.	13.8	224
20	Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 2008, 155, 90-107.	5.2	217
21	Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proceedings of the Combustion Institute, 2005, 30, 793-800.	3.9	213
22	Hybrid Method of Moments for modeling soot formation and growth. Combustion and Flame, 2009, 156, 1143-1155.	5.2	206
23	On the formation and early evolution of soot in turbulent nonpremixed flames. Combustion and Flame, 2012, 159, 317-335.	5.2	194
24	A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proceedings of the Combustion Institute, 2007, 31, 1711-1719.	3.9	189
25	Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach. , 0, , .		176
26	Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. Combustion and Flame, 2005, 143, 56-78.	5.2	163
27	A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 2014, 161, 866-884.	5.2	153
28	Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combustion and Flame, 2000, 123, 358-374.	5.2	149
29	Large-Eddy Simulation Inflow Conditions for Coupling with Reynolds-Averaged Flow Solvers. AIAA Journal, 2004, 42, 478-484.	2.6	148
30	Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proceedings of the Combustion Institute, 2011, 33, 2143-2152.	3.9	147
31	LES model for sooting turbulent nonpremixed flames. Combustion and Flame, 2012, 159, 2166-2180.	5.2	142
32	Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 2008, 155, 70-89.	5.2	140
33	Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO ₂ Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis, 2017, 7, 1197-1206.	11.2	138
34	A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combustion and Flame, 2005, 143, 587-598.	5.2	134
35	Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel, 2014, 117, 340-350.	6.4	133
36	Understanding the antagonistic effect of methanol as a component in surrogate fuel models: A case study of methanol/n-heptane mixtures. Combustion and Flame, 2021, 226, 229-242.	5.2	129

#	Article	IF	CITATIONS
37	Reconstruction and Effective Transport Properties of the Catalyst Layer in PEM Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B673.	2.9	128
38	Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proceedings of the Combustion Institute, 2000, 28, 41-49.	3.9	127
39	Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combustion and Flame, 2014, 161, 1849-1865.	5.2	124
40	Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels. , 2007, , .		122
41	A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. ACS Nano, 2020, 14, 12470-12490.	14.6	122
42	Optimized reaction mechanism rate rules for ignition of normal alkanes. Combustion and Flame, 2016, 173, 468-482.	5.2	121
43	Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers. Journal of Computational Physics, 2008, 227, 8655-8671.	3.8	117
44	A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combustion and Flame, 2009, 156, 678-696.	5.2	117
45	Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proceedings of the Combustion Institute, 2009, 32, 1527-1535.	3.9	115
46	Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combustion and Flame, 2005, 142, 329-347.	5.2	113
47	Reynolds-Averaged Navier-Stokes Simulations of the HyShot II Scramjet. AIAA Journal, 2012, 50, 1717-1732.	2.6	110
48	A component library framework for deriving kinetic mechanisms for multi-component fuel surrogates: Application for jet fuel surrogates. Combustion and Flame, 2016, 165, 288-309.	5.2	104
49	A joint volume-surface model of soot aggregation with the method of moments. Proceedings of the Combustion Institute, 2009, 32, 785-792.	3.9	99
50	Unsteady Flamelet Modeling of Soot Formation in Turbulent Diffusion Flames. Combustion Science and Technology, 2000, 158, 389-406.	2.3	98
51	An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms. Combustion Theory and Modelling, 2008, 12, 1089-1108.	1.9	97
52	Mechanism optimization based on reaction rate rules. Combustion and Flame, 2014, 161, 405-415.	5.2	97
53	An experimental and modeling study of n -octanol combustion. Proceedings of the Combustion Institute, 2015, 35, 419-427.	3.9	94
54	Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proceedings of the Combustion Institute, 2002, 29, 1971-1978.	3.9	93

#	Article	IF	CITATIONS
55	Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model. Combustion and Flame, 2009, 156, 1614-1626.	5.2	92
56	An experimental study on MILD combustion of prevaporised liquid fuels. Applied Energy, 2015, 151, 93-101.	10.1	92
57	Scalar gradient and small-scale structure in turbulent premixed combustion. Physics of Fluids, 2007, 19, .	4.0	88
58	Experimental and numerical study of MILD combustion for gas turbine applications. Applied Energy, 2015, 148, 456-465.	10.1	88
59	Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames. Combustion and Flame, 2014, 161, 798-809.	5.2	85
60	An efficient flamelet-based combustion model for compressible flows. Combustion and Flame, 2015, 162, 652-667.	5.2	83
61	Extinction and reignition in a diffusion flame: a direct numerical simulation study. Journal of Fluid Mechanics, 2004, 518, 231-259.	3.4	81
62	A level set formulation for premixed combustion LES considering the turbulent flame structure. Combustion and Flame, 2009, 156, 801-812.	5.2	80
63	Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combustion and Flame, 2015, 162, 4264-4282.	5.2	79
64	Di-n-buthylether, n-octanol, and n-octane as fuel candidates for diesel engine combustion. Combustion and Flame, 2016, 163, 66-78.	5.2	79
65	Capabilities and limitations of multi-regime flamelet combustion models. Combustion and Flame, 2012, 159, 242-264.	5.2	77
66	Solvent Degradation in Nonaqueous Li-O ₂ Batteries: Oxidative Stability versus H-Abstraction. Journal of Physical Chemistry Letters, 2014, 5, 2419-2424.	4.6	77
67	Ignition characteristics of a bio-derived class of saturated and unsaturated furans for engine applications. Proceedings of the Combustion Institute, 2015, 35, 2957-2965.	3.9	77
68	Experimental and numerical low-temperature oxidation study of ethanol and dimethyl ether. Combustion and Flame, 2014, 161, 384-397.	5.2	76
69	Detailed kinetic modeling of dimethoxymethane. Part II: Experimental and theoretical study of the kinetics and reaction mechanism. Combustion and Flame, 2019, 205, 522-533.	5.2	76
70	Auto-ignition of oxymethylene ethers (OMEn, nÂ=Â2–4) as promising synthetic e-fuels from renewable electricity: shock tube experiments and automatic mechanism generation. Fuel, 2020, 264, 116711.	6.4	75
71	Effects of radiation on spray flame characteristics and soot formation. Combustion and Flame, 2008, 152, 2-13.	5.2	74
72	Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames. Proceedings of the Combustion Institute, 2011, 33, 667-674.	3.9	74

#	Article	IF	CITATIONS
73	Modeling partially premixed combustion behavior in multiphase LES. Combustion and Flame, 2015, 162, 159-180.	5.2	73
74	Numerical Investigation of Soot Formation and Oxidation Under Diesel Engine Conditions. , 0, , .		72
75	Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt ₃ Ni(111). Journal of Physical Chemistry C, 2012, 116, 4698-4704.	3.1	71
76	A chemical mechanism for low to high temperature oxidation of methylcyclohexane as a component of transportation fuel surrogates. Combustion and Flame, 2015, 162, 1193-1213.	5.2	71
77	Impact of exhaust gas recirculation on ignition delay times of gasoline fuel: An experimental and modeling study. Proceedings of the Combustion Institute, 2019, 37, 639-647.	3.9	69
78	DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS. Atomization and Sprays, 2010, 20, 311-336.	0.8	68
79	3d Simulation of Di Diesel Combustion and Pollutant Formation Using a Two-Component Reference Fuel. Oil and Gas Science and Technology, 1999, 54, 233-244.	1.4	66
80	Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine. Combustion and Flame, 2005, 143, 11-26.	5.2	65
81	Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion. Combustion Theory and Modelling, 2006, 10, 439-458.	1.9	65
82	An efficient semi-implicit compressible solver for large-eddy simulations. Journal of Computational Physics, 2007, 226, 1256-1270.	3.8	65
83	Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Physics of Fluids, 2008, 20, .	4.0	65
84	Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. Computers and Fluids, 2012, 63, 70-81.	2.5	64
85	Large eddy simulation of soot evolution in an aircraft combustor. Physics of Fluids, 2013, 25, .	4.0	64
86	Propagation speed and stability of spherically expanding hydrogen/air flames: Experimental study and asymptotics. Proceedings of the Combustion Institute, 2017, 36, 1531-1538.	3.9	64
87	A 3D Unsplit Forward/Backward Volume-of-Fluid Approach and Coupling to the Level Set Method. Journal of Computational Physics, 2013, 233, 10-33.	3.8	60
88	Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames. Proceedings of the Combustion Institute, 2019, 37, 1879-1886.	3.9	60
89	Radiation of noise in turbulent non-premixed flames. Proceedings of the Combustion Institute, 2009, 32, 1545-1553.	3.9	59
90	LES/PDF based modeling of soot–turbulence interactions in turbulent flames. Proceedings of the Combustion Institute, 2013, 34, 1183-1192.	3.9	59

#	Article	IF	CITATIONS
91	Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proceedings of the Combustion Institute, 2021, 38, 2617-2625.	3.9	59
92	Determination of burning velocities from spherically expanding H 2 /air flames. Proceedings of the Combustion Institute, 2015, 35, 711-719.	3.9	57
93	Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly-conditional moment closure approach. Physics of Fluids, 2001, 13, 3824-3834.	4.0	56
94	Large-eddy simulation of turbulent reacting flows. Progress in Aerospace Sciences, 2008, 44, 466-478.	12.1	55
95	Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combustion and Flame, 2013, 160, 1298-1309.	5.2	55
96	A Framework for Coupling Reynolds-Averaged With Large-Eddy Simulations for Gas Turbine Applications. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127, 806-815.	1.5	54
97	Some effects of gasoline and diesel mixtures on partially premixed combustion and comparison with the practical fuels gasoline and diesel in a compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 226, 1259-1270.	1.9	54
98	LES of a premixed jet flame DNS using a strained flamelet model. Combustion and Flame, 2013, 160, 2911-2927.	5.2	54
99	A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combustion and Flame, 2008, 154, 740-760.	5.2	53
100	Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-Methylhexane. Journal of Physical Chemistry A, 2016, 120, 2201-2217.	2.5	53
101	Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows. Physical Review E, 2008, 77, 026704.	2.1	52
102	A comprehensive experimental and kinetic modeling study of butanone. Combustion and Flame, 2016, 168, 296-309.	5.2	52
103	Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combustion and Flame, 2016, 166, 192-202.	5.2	51
104	Thermochemical Properties of Polycyclic Aromatic Hydrocarbons (PAH) from G3MP2B3 Calculations. Journal of Physical Chemistry A, 2007, 111, 6510-6520.	2.5	49
105	A spectrally refined interface approach for simulating multiphase flows. Journal of Computational Physics, 2009, 228, 1658-1677.	3.8	49
106	Mechanism of Molecular Oxygen Reduction at the Cathode of a PEM Fuel Cell: Non-Electrochemical Reactions on Catalytic Pt Particles. Journal of Physical Chemistry C, 2008, 112, 8464-8475.	3.1	48
107	Large eddy simulation subfilter modeling of soot-turbulence interactions. Physics of Fluids, 2011, 23, .	4.0	48
108	First-Principles Based Analysis of the Electrocatalytic Activity of the Unreconstructed Pt(100) Surface for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2012, 116, 6174-6183.	3.1	48

#	Article	IF	CITATIONS
109	A monotonicity preserving conservative sharp interface flow solver for high density ratio two-phase flows. Journal of Computational Physics, 2013, 249, 185-203.	3.8	48
110	A generalized periodic boundary condition for lattice Boltzmann method simulation of a pressure driven flow in a periodic geometry. Physics of Fluids, 2007, 19, .	4.0	47
111	Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proceedings of the Combustion Institute, 2015, 35, 1215-1223.	3.9	47
112	Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition. Combustion Theory and Modelling, 2003, 7, 317-332.	1.9	46
113	Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines. Proceedings of the Combustion Institute, 2007, 31, 2903-2911.	3.9	46
114	First-Principles Analysis of Oxygen-Containing Adsorbates Formed from the Electrochemical Discharge of Water on Pt(111). Journal of Physical Chemistry C, 2008, 112, 9760-9768.	3.1	45
115	Identifying Descriptors for Solvent Stability in Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2014, 5, 1318-1323.	4.6	44
116	Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angewandte Chemie, 2017, 129, 5500-5544.	2.0	43
117	Resolved simulations of single char particle combustion in a laminar flow field. Fuel, 2017, 201, 15-28.	6.4	43
118	Synergistic interactions of thermodiffusive instabilities and turbulence in lean hydrogen flames. Combustion and Flame, 2022, 244, 112254.	5.2	43
119	Numerical and asymptotic studies of the structure of premixed iso-octane flames. Proceedings of the Combustion Institute, 1996, 26, 763-771.	0.3	42
120	A ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries. Journal of Computational Physics, 2007, 221, 600-614.	3.8	42
121	Higher Alcohol and Ether Biofuels for Compression-Ignition Engine Application: A Review with Emphasis on Combustion Kinetics. Energy & amp; Fuels, 2021, 35, 1890-1917.	5.1	42
122	Investigation of scalar dissipation rate fluctuations in non-premixed turbulent combustion using a stochastic approach. Combustion Theory and Modelling, 2001, 5, 41-57.	1.9	41
123	Sensitivity analysis, uncertainty quantification, and optimization for thermochemical properties in chemical kinetic combustion models. Proceedings of the Combustion Institute, 2019, 37, 771-779.	3.9	41
124	An extended multi-regime flamelet model for IC engines. Combustion and Flame, 2012, 159, 2767-2776.	5.2	40
125	First Principles Study of Morphology, Doping Level, and Water Solvation Effects on the Catalytic Mechanism of Nitrogenâ€Doped Graphene in the Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 2662-2670.	3.7	40
126	Predicting kinetic parameters for coal devolatilization by means of Artificial Neural Networks. Proceedings of the Combustion Institute, 2019, 37, 2943-2950.	3.9	40

#	Article	IF	CITATIONS
127	Experimental and numerical study of soot formation in counterflow diffusion flames of gasoline surrogate components. Combustion and Flame, 2019, 210, 159-171.	5.2	40
128	Activity Descriptor for Catalytic Reactions on Doped Cerium Oxide. ACS Catalysis, 2013, 3, 1253-1262.	11.2	39
129	A two-equation model for non-unity Lewis number differential diffusion in lean premixed laminar flames. Combustion and Flame, 2013, 160, 240-250.	5.2	39
130	An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion. , 2005, , .		38
131	Generation of Optimal Artificial Neural Networks Using a Pattern Search Algorithm: Application to Approximation of Chemical Systems. Neural Computation, 2008, 20, 573-601.	2.2	38
132	Numerical errors in the computation of subfilter scalar variance in large eddy simulations. Physics of Fluids, 2009, 21, .	4.0	38
133	Systematic Analysis Strategies for the Development of Combustion Models from DNS: A Review. Flow, Turbulence and Combustion, 2015, 95, 231-259.	2.6	38
134	Laminar burning velocities, CO, and NOx emissions of premixed polyoxymethylene dimethyl ether flames. Fuel, 2021, 293, 120321.	6.4	38
135	An analysis of premixed flamelet models for large eddy simulation of turbulent combustion. Physics of Fluids, 2010, 22, .	4.0	37
136	Large Eddy Simulation of Stratified and Sheared Flames of a Premixed Turbulent Stratified Flame Burner Using a Flamelet Model with Heat Loss. Flow, Turbulence and Combustion, 2014, 92, 201-235.	2.6	36
137	Computational study on the internal layer in a diffuser. Journal of Fluid Mechanics, 2006, 550, 391.	3.4	35
138	Local dynamics of copper active sites in zeolite catalysts for selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 237, 263-272.	20.2	35
139	A computational study on the kinetics of unimolecular reactions of ethoxyethylperoxy radicals employing CTST and VTST. Proceedings of the Combustion Institute, 2015, 35, 161-169.	3.9	34
140	Numerical study of coal particle ignition in air and oxy-atmosphere. Proceedings of the Combustion Institute, 2019, 37, 2867-2874.	3.9	34
141	Computational study of flame characteristics of a turbulent piloted jet burner with inhomogeneous inlets. Proceedings of the Combustion Institute, 2017, 36, 1747-1757.	3.9	33
142	Intrinsic instabilities in premixed hydrogen flames: parametric variation of pressure, equivalence ratio, and temperature. Part 2 – Nonâ€linear regime and flame speed enhancement. Combustion and Flame, 2022, 240, 111936.	5.2	33
143	Modeling scalar dissipation and scalar variance in large eddy simulation: Algebraic and transport equation closures. Physics of Fluids, 2012, 24, .	4.0	32
144	Chemical kinetic uncertainty quantification for Large Eddy Simulation of turbulent nonpremixed combustion. Proceedings of the Combustion Institute, 2013, 34, 1299-1306.	3.9	32

#	Article	IF	CITATIONS
145	Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study. Proceedings of the Combustion Institute, 2017, 36, 587-595.	3.9	32
146	Oxidation of 2-methylfuran and 2-methylfuran/n-heptane blends: An experimental and modeling study. Combustion and Flame, 2018, 196, 54-70.	5.2	32
147	Impact of thermochemistry on optimized kinetic model predictions: Auto-ignition of diethyl ether. Combustion and Flame, 2019, 210, 454-466.	5.2	32
148	Experimental and Numerical Study of the Scalar Turbulent/Non-Turbulent Interface Layer in a Jet Flow. Flow, Turbulence and Combustion, 2014, 92, 429-449.	2.6	31
149	Using machine learning with target-specific feature sets for structure-property relationship modeling of octane numbers and octane sensitivity. Fuel, 2020, 281, 118772.	6.4	31
150	Detailed kinetic reaction mechanism for ignition and oxidation of α-methylnaphthalene. Proceedings of the Combustion Institute, 1996, 26, 721-728.	0.3	30
151	Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines. , 0, , .		30
152	Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH ₃ -SCR Monitoring: The Role of Cu Mobility. ACS Applied Materials & Interfaces, 2019, 11, 8097-8105.	8.0	30
153	On the Generation of Direct Combustion Noise in Turbulent Non-Premixed Flames. International Journal of Aeroacoustics, 2012, 11, 25-78.	1.3	29
154	A priori testing of a two-dimensional unsteady flamelet model for three-feed combustion systems. Proceedings of the Combustion Institute, 2013, 34, 1317-1324.	3.9	29
155	Ignition characteristics of saturated and unsaturated furans. Combustion and Flame, 2016, 171, 133-136.	5.2	29
156	LES of <i>n</i> -Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model. Oil and Gas Science and Technology, 2017, 72, 29.	1.4	29
157	Role of ring-enlargement reactions in the formation of aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2020, 22, 4699-4714.	2.8	29
158	Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow. Comptes Rendus - Mecanique, 2009, 337, 458-468.	2.1	28
159	Modeling soot oxidation with the Extended Quadrature Method of Moments. Proceedings of the Combustion Institute, 2017, 36, 789-797.	3.9	28
160	Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler. Applied Energy, 2018, 229, 977-989.	10.1	28
161	Laminar premixed and non-premixed flame investigation on the influence of dimethyl ether addition on n-heptane combustion. Combustion and Flame, 2020, 212, 323-336.	5.2	28
162	Collaborative investigation of the internal flow and near-nozzle flow of an eight-hole gasoline injector (Engine Combustion Network Spray G). International Journal of Engine Research, 2023, 24, 2297-2314.	2.3	28

#	Article	IF	CITATIONS
163	The effect of pressure on the hydrodynamic stability limit of premixed flames. Proceedings of the Combustion Institute, 2021, 38, 1973-1981.	3.9	28
164	Exploring the fuel structure dependence of laminar burning velocity: A machine learning based group contribution approach. Combustion and Flame, 2021, 232, 111525.	5.2	28
165	Modeling autoignition in non-premixed turbulent combustion using a stochastic flamelet approach. Proceedings of the Combustion Institute, 2005, 30, 2745-2753.	3.9	27
166	A flamelet model for premixed combustion under variable pressure conditions. Proceedings of the Combustion Institute, 2013, 34, 2995-3003.	3.9	27
167	Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130324.	3.4	27
168	Adjoint-based sensitivity analysis of quantities of interest of complex combustion models. Combustion Theory and Modelling, 2019, 23, 180-196.	1.9	27
169	Investigation of the Ignition Process of Sprays Under Diesel Engine Conditions Using Reduced n-Heptane Chemistry. , 0, , .		26
170	Experimental and numerical study of a novel biofuel: 2-Butyltetrahydrofuran. Combustion and Flame, 2017, 178, 257-267.	5.2	26
171	2-Methylfuran: A bio-derived octane booster for spark-ignition engines. Fuel, 2018, 225, 349-357.	6.4	26
172	Analytic solution for a higher-order lattice Boltzmann method: Slip velocity and Knudsen layer. Physical Review E, 2008, 78, 016702.	2.1	25
173	Assessment of counterflow to measure laminar burning velocities using direct numerical simulations. Combustion Theory and Modelling, 2012, 16, 419-433.	1.9	25
174	Reduced n-heptane mechanism for non-premixed combustion with emphasis on pollutant-relevant intermediate species. Proceedings of the Combustion Institute, 1996, 26, 729-737.	0.3	24
175	Outflow Conditions for Intregrated Large Eddy Simulation/Reynolds-Averaged Navier-Stokes Simulations. AIAA Journal, 2005, 43, 156-164.	2.6	24
176	Elucidation and Comparison of the Effect of LiTFSI and LiNO ₃ Salts on Discharge Chemistry in Nonaqueous Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 19319-19325.	8.0	24
177	Impact of acoustic forcing on soot evolution and temperature in ethylene-air flames. Proceedings of the Combustion Institute, 2017, 36, 781-788.	3.9	24
178	Analysis of Different Sound Source Formulations to Simulate Combustion Generated Noise Using a Hybrid LES/APE-RF Method. International Journal of Aeroacoustics, 2009, 8, 95-123.	1.3	23
179	Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine. , 0, , .		23
180	Transient multiple particle simulations of char particle combustion. Fuel, 2017, 199, 289-298.	6.4	23

#	Article	IF	CITATIONS
181	The C5 chemistry preceding the formation of polycyclic aromatic hydrocarbons in a premixed 1-pentene flame. Combustion and Flame, 2019, 206, 411-423.	5.2	23
182	Investigating the effect of oxy-fuel combustion and light coal volatiles interaction: A mass spectrometric study. Combustion and Flame, 2019, 204, 320-330.	5.2	23
183	Investigating the impacts of thermochemical group additivity values on kinetic model predictions through sensitivity and uncertainty analyses. Combustion and Flame, 2020, 213, 394-408.	5.2	23
184	Turbulent flame speed and reaction layer thickening in premixed jet flames at constant Karlovitz and increasing Reynolds numbers. Proceedings of the Combustion Institute, 2021, 38, 2939-2947.	3.9	23
185	HÈ®2Â+ÂHÈ®2: High level theory and the role of singlet channels. Combustion and Flame, 2022, 243, 111975.	5.2	23
186	On the lattice Boltzmann method for multiphase flows with large density ratios. Journal of Computational Physics, 2015, 303, 19-27.	3.8	22
187	Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors. SAE International Journal of Fuels and Lubricants, 0, 10, 380-393.	0.2	22
188	DNS study of the global heat release rate during early flame kernel development under engine conditions. Combustion and Flame, 2020, 213, 455-466.	5.2	22
189	The role of resonance-stabilized radical chain reactions in polycyclic aromatic hydrocarbon growth: Theoretical calculation and kinetic modeling. Proceedings of the Combustion Institute, 2021, 38, 1459-1466.	3.9	22
190	Higher-order conditional moment closure modelling of local extinction and reignition in turbulent combustion. Combustion Theory and Modelling, 2002, 6, 425-437.	1.9	22
191	Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames. Combustion and Flame, 1998, 113, 589-602.	5.2	21
192	Asymptotic structure of rich methane-air flames. Combustion and Flame, 2001, 127, 2265-2277.	5.2	21
193	Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Physics of Fluids, 2006, 18, 075103.	4.0	21
194	Influence of the Injector Geometry on Primary Breakup in Diesel Injector Systems. , 0, , .		21
195	A concentric flow slot burner for stabilizing turbulent partially premixed inhomogeneous flames of gaseous fuels. Experimental Thermal and Fluid Science, 2018, 91, 214-229.	2.7	21
196	Homogeneous ignition and volatile combustion of single solid fuel particles in air and oxy-fuel conditions. Fuel, 2021, 291, 120101.	6.4	21
197	Consistent Boundary Conditions for Integrated LES/RANS Simulations: LES Outflow Conditions. , 2002, , .		20
198	Transient model for soot formation during the combustion of single coal particles. Proceedings of the Combustion Institute, 2017, 36, 2131-2138.	3.9	20

#	Article	IF	CITATIONS
199	A direct numerical simulation study on NO formation in lean premixed flames. Proceedings of the Combustion Institute, 2017, 36, 2033-2043.	3.9	20
200	Understanding Ion Pairing in High-Salt Concentration Electrolytes Using Classical Molecular Dynamics Simulations and Its Implications for Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry C, 2018, 122, 8094-8101.	3.1	20
201	Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines. SAE International Journal of Fuels and Lubricants, 0, 11, 353-377.	0.2	20
202	Flame propagation speed and Markstein length of spherically expanding flames: Assessment of extrapolation and measurement techniques. Proceedings of the Combustion Institute, 2019, 37, 1521-1528.	3.9	20
203	Adaptive chemistry lookup tables for combustion simulations using optimal B-spline interpolants. Combustion Theory and Modelling, 2019, 23, 674-699.	1.9	20
204	Numerical investigation of coal particle stream ignition in oxy-atmosphere. Fuel, 2019, 241, 477-487.	6.4	20
205	Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn2O4 Spinel Obtained from Polyol-Mediated Synthesis. Materials, 2018, 11, 806.	2.9	19
206	Experimental investigation of soot evolution in a turbulent non-premixed prevaporized toluene flame. Proceedings of the Combustion Institute, 2019, 37, 849-857.	3.9	19
207	Experimental comparison of combustion and emission characteristics between a market gasoline and its surrogate. Combustion and Flame, 2020, 214, 306-322.	5.2	19
208	Intrinsic instabilities in premixed hydrogen flames: Parametric variation of pressure, equivalence ratio, and temperature. Part 1 - Dispersion relations in the linear regime. Combustion and Flame, 2022, 240, 111935.	5.2	19
209	Conditional filtering method for large-eddy simulation of turbulent nonpremixed combustion. Physics of Fluids, 2005, 17, 105103.	4.0	18
210	A New Euler/Lagrange Approach for Multiphase Simulations of a Multi-Hole GDI Injector. , 0, , .		18
211	Modeling turbulence–chemistry interaction in lean premixed hydrogen flames with a strained flamelet model. Combustion and Flame, 2016, 174, 194-207.	5.2	18
212	Modeling of the subfilter scalar dissipation rate using the concept of optimal estimators. Physics of Fluids, 2008, 20, 091701.	4.0	17
213	Lattice Boltzmann modeling of multicomponent diffusion in narrow channels. Physical Review E, 2009, 79, 016702.	2.1	17
214	Analysis of first stage ignition delay times of dimethyl ether in a laminar flow reactor. Combustion Theory and Modelling, 2013, 17, 906-936.	1.9	17
215	An analytical approximation for low- and high-temperature autoignition for dimethyl ether–air mixtures. Proceedings of the Combustion Institute, 2015, 35, 275-281.	3.9	17
216	Experimental Design for Discrimination of Chemical Kinetic Models for Oxy-Methane Combustion. Energy & Fuels, 2017, 31, 5533-5542.	5.1	17

#	Article	IF	CITATIONS
217	Triple-injection strategy for model-based control of premixed charge compression ignition diesel engine combustion. International Journal of Engine Research, 2018, 19, 230-240.	2.3	17
218	Exploring the combustion chemistry of a novel lignocellulose-derived biofuel: cyclopentanol. Part I: quantum chemistry calculation and kinetic modeling. Combustion and Flame, 2019, 210, 490-501.	5.2	17
219	A property database of fuel compounds with emphasis on spark-ignition engine applications. Applications in Energy and Combustion Science, 2021, 5, 100018.	1.5	17
220	Modification of sooting tendency by magnetic effects. Proceedings of the Combustion Institute, 2015, 35, 889-895.	3.9	16
221	Axisymmetric Linear Hyperspectral Absorption Spectroscopy and Residuum-Based Parameter Selection on a Counter Flow Burner. Energies, 2019, 12, 2786.	3.1	16
222	Exploring the combustion chemistry of a novel lignocellulose-derived biofuel: cyclopentanol. Part II: experiment, model validation, and functional group analysis. Combustion and Flame, 2019, 210, 134-144.	5.2	16
223	A DNS study of the impact of gravity on spherically expanding laminar premixed flames. Combustion and Flame, 2020, 216, 412-425.	5.2	16
224	Oxymethylene ether – n-dodecane blend spray combustion: Experimental study and large-eddy simulations. Proceedings of the Combustion Institute, 2021, 38, 3417-3425.	3.9	16
225	Multi-Code Simulations: A Generalized Coupling Approach. , 2005, , .		15
226	Convergent Iterative Constrained Variation Algorithm for Calculation of Electron-Transfer Transition States. Journal of the Electrochemical Society, 2006, 153, E52.	2.9	15
227	LES of Gas Exchange in IC Engines. Oil and Gas Science and Technology, 2014, 69, 29-40.	1.4	15
228	Generalised scale-by-scale energy-budget equations and large-eddy simulations of anisotropic scalar turbulence at various Schmidt numbers. Journal of Turbulence, 2014, 15, 857-882.	1.4	15
229	Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models. Combustion Theory and Modelling, 2018, 22, 480-504.	1.9	15
230	The significance of beam steering on laser-induced incandescence measurements in laminar counterflow flames. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	15
231	Flamelet LES of a swirl-stabilized multi-stream pulverized coal burner in air and oxy-fuel atmospheres with pollutant formation. Proceedings of the Combustion Institute, 2021, 38, 4141-4149.	3.9	15
232	A new detailed kinetic model for surrogate fuels: C3MechV3.3. Applications in Energy and Combustion Science, 2022, 9, 100043.	1.5	15
233	Efficient dynamic Monte Carlo algorithm for time-dependent catalytic surface chemistry. Physical Review E, 2006, 74, 046707.	2.1	14
234	Integrated RANS/LES Computations of an Entire Gas Turbine Jet Engine. , 2007, , .		14

#	Article	IF	CITATIONS
235	Surrogate fuels for the simulation of diesel engine combustion of novel biofuels. International Journal of Engine Research, 2015, 16, 531-546.	2.3	14
236	An experimental and computational study on multicomponent evaporation of diesel fuel droplets. Fuel, 2020, 275, 117727.	6.4	14
237	DNS-driven analysis of the Flamelet/Progress Variable model assumptions on soot inception, growth, and oxidation in turbulent flames. Combustion and Flame, 2020, 214, 437-449.	5.2	14
238	Highly radiating hydrogen flames: Effect of toluene concentration and phase. Proceedings of the Combustion Institute, 2021, 38, 1099-1106.	3.9	14
239	Pressure-induced Hydrodynamic Instability in Premixed Methane-Air Slot Flames. Combustion Science and Technology, 2020, 192, 1998-2009.	2.3	14
240	Stochastic mixing model with power law decay of variance. Physical Review E, 2005, 71, 016310.	2.1	13
241	Detailed Numerical Simulations of Primary Atomization of Liquid Jets in Crossflow. , 2009, , .		13
242	Diffusion Impedance Element Model for the Triple Phase Boundary. Journal of the Electrochemical Society, 2011, 158, B877.	2.9	13
243	Scalar dissipation rate based multi-zone model for early-injected and conventional diesel engine combustion. Combustion and Flame, 2017, 175, 138-154.	5.2	13
244	Theoretical analysis and kinetic modeling of hydrogen abstraction and addition of 1,3-cyclopentadiene and associated reactions on the C5H7 potential energy surface. Combustion and Flame, 2020, 222, 423-433.	5.2	13
245	Effects of injection strategy on performance and emissions metrics in a diesel/methane dual-fuel single-cylinder compression ignition engine. International Journal of Engine Research, 2019, 20, 1059-1072.	2.3	12
246	The role of differential diffusion during early flame kernel development under engine conditions - part I: Analysis of the heat-release-rate response. Combustion and Flame, 2020, 221, 502-515.	5.2	12
247	Deep Learning at Scale for Subgrid Modeling in Turbulent Flows: Regression and Reconstruction. Lecture Notes in Computer Science, 2019, , 541-560.	1.3	12
248	Laminar counterflow mixing of acetylene into hot combustion products. Proceedings of the Combustion Institute, 1994, 25, 1357-1364.	0.3	11
249	ORR Adsorbate Dynamics on Pt Single Crystal PEM Fuel Cells. ECS Transactions, 2008, 16, 1131-1142.	0.5	11
250	An experimental and kinetic modelling study of n-butyl formate combustion. Combustion and Flame, 2013, 160, 2680-2692.	5.2	11
251	Combustion instability mitigation by magnetic fields. Physical Review E, 2017, 95, 063113.	2.1	11
252	Dual magnetic effects on soot production in partially premixed flames. Proceedings of the Combustion Institute, 2017, 36, 1377-1385.	3.9	11

#	Article	IF	CITATIONS
253	Experimental and numerical studies on electric field distribution of a premixed stagnation flame under DC power supply. Combustion and Flame, 2020, 215, 103-112.	5.2	11
254	Adjoint sensitivity analysis of kinetic, thermochemical, and transport data of nitrogen and ammonia chemistry. Proceedings of the Combustion Institute, 2021, 38, 777-785.	3.9	11
255	Flame synthesis of carbon metal-oxide nanocomposites in a counterflow burner. Proceedings of the Combustion Institute, 2021, 38, 1269-1277.	3.9	11
256	Iterative model-based experimental design for efficient uncertainty minimization of chemical mechanisms. Proceedings of the Combustion Institute, 2021, 38, 1033-1042.	3.9	11
257	Numerical investigation and assessment of flamelet-based models for the prediction of pulverized solid fuel homogeneous ignition and combustion. Combustion and Flame, 2022, 235, 111693.	5.2	11
258	A Comprehensive Experimental and Kinetic Modeling Study of the Combustion Chemistry of Diethoxymethane. Energy & Fuels, 2021, 35, 16086-16100.	5.1	11
259	Multi-scale Coupling for Predictive Injector Simulations. Lecture Notes in Computer Science, 2017, , 96-108.	1.3	11
260	Finite Reynolds number corrections of the 4/5 law for decaying turbulence. Physical Review Fluids, 2016, 1, .	2.5	11
261	Quantitative measurement of mixture fraction in counterflow diffusion flames by laser-induced breakdown spectroscopy. Combustion and Flame, 2022, 241, 112130.	5.2	11
262	Integration of RANS and LES Flow Solvers for Simultaneous Flow Computations. , 2003, , .		10
263	Numerical Investigation of Unburnt Hydrocarbon Emissions in a Homogeneous-Charge Late-Injection Diesel-Fueled Engine. , 2008, , .		10
264	Numerical Assessment of Emission Sources for a Modified Diesel Engine Running in PCCI Mode on a Mixture of Gasoline and Diesel. , 0, , .		10
265	Model reduction and lumping procedures. Computer Aided Chemical Engineering, 2019, , 799-827.	0.5	10
266	Laminar flow reactor experiments for ignition delay time and species measurements at low temperatures: Linear alkanes and dimethyl ether. Combustion and Flame, 2019, 202, 347-361.	5.2	10
267	A new modeling approach for mixture fraction statistics based on dissipation elements. Proceedings of the Combustion Institute, 2021, 38, 2681-2689.	3.9	10
268	Coupled RANS-LES Computation of a Compressor and Combustor in a Gas Turbine Engine. , 2004, , .		9
269	Antialiasing Filters for Coupled Reynolds-Averaged/Large-Eddy Simulations. AIAA Journal, 2005, 43, 608-615.	2.6	9
270	Prediction of Combustion-Generated Noise in Non-Premixed Turbulent Jet Flames Using LES. , 2006, , .		9

Prediction of Combustion-Generated Noise in Non-Premixed Turbulent Jet Flames Using LES. , 2006, , . 270

#	Article	IF	CITATIONS
271	A low-complexity global optimization algorithm for temperature and pollution control in flames with complex chemistry. International Journal of Computational Fluid Dynamics, 2006, 20, 93-98.	1.2	9
272	Influence of parametric forcing on the nonequilibrium dynamics of wave patterns. Physical Review E, 2007, 75, 046208.	2.1	9
273	An Efficient Flamelet-based Combustion Model for Supersonic Flows. , 2011, , .		9
274	Experimental Investigation of Diesel and Surrogate Fuels: Spray and Ignition Behavior. , 2011, , .		9
275	An efficient approach of unsteady flamelet modeling of a cross-flow-jet combustion system using LES. Combustion Theory and Modelling, 2011, 15, 849-862.	1.9	9
276	Multi-Dimensional Flamelet Modeling of Multiple Injection Diesel Engines. , 2012, , .		9
277	On a consistent high-order finite difference scheme with kinetic energy conservation for simulating turbulent reacting flows. Journal of Computational Physics, 2016, 327, 612-628.	3.8	9
278	Nonlinear Model Predictive Control for the Starting Process of a Free-Piston Linear Generator. IFAC-PapersOnLine, 2018, 51, 632-639.	0.9	9
279	The role of differential diffusion during early flame kernel development under engine conditions – partÂll: Effect of flame structure and geometry. Combustion and Flame, 2020, 221, 516-529.	5.2	9
280	Validation of a RANS 3D-CFD Gaseous Emission Model with Space-, Species-, and Cycle-Resolved Measurements from an SI DI Engine. Energies, 2020, 13, 4287.	3.1	9
281	Low- and high-temperature study of n-heptane combustion chemistry. Proceedings of the Combustion Institute, 2021, 38, 405-413.	3.9	9
282	Low global-warming-potential refrigerant CH2F2 (R-32): Integration of a radiation heat loss correction method to accurately determine experimental flame speed metrics. Proceedings of the Combustion Institute, 2021, 38, 4665-4672.	3.9	9
283	Experimental and theoretical evidence for the temperature-determined evolution of PAH functional groups. Proceedings of the Combustion Institute, 2021, 38, 1467-1475.	3.9	9
284	Unimolecular reactions of the resonance-stabilized cyclopentadienyl radicals and their role in the polycyclic aromatic hydrocarbon formation. Proceedings of the Combustion Institute, 2021, 38, 729-737.	3.9	9
285	Detailed analysis of early-stage NO formation in turbulent pulverized coal combustion with fuel-bound nitrogen. Proceedings of the Combustion Institute, 2021, 38, 4111-4119.	3.9	9
286	Updated thermochemistry for renewable transportation fuels: New groups and group values for acetals and ethers, their radicals, and peroxy species. International Journal of Chemical Kinetics, 2021, 53, 299-307.	1.6	9
287	Furan formation pathways exploration in low temperature oxidation of 1,3-butadiene, trans-2-butene, and cis-2-butene. Combustion and Flame, 2021, 232, 111519.	5.2	9
288	Chemical insights into the multi-regime low-temperature oxidation of di-n-propyl ether: Jet-stirred reactor experiments and kinetic modeling. Combustion and Flame, 2021, 233, 111592.	5.2	9

#	Article	IF	CITATIONS
289	Numerical modeling of single droplet flash boiling behavior of e-fuels considering internal and external vaporization. Fuel, 2022, 308, 121934.	6.4	9
290	Tailoring Fuels for a Shockless Explosion Combustor. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 299-315.	0.3	9
291	Towards Multi-Component Analysis of Gas Turbines by CFD: Integration of RANS and LES Flow Solvers. , 2003, , 101.		8
292	Optimal Inclusion of Transverse Effects in the NonReflecting Outflow Boundary Condition. AIAA Journal, 2012, 50, 1291-1306.	2.6	8
293	Higher-order dissipation in the theory of homogeneous isotropic turbulence. Journal of Fluid Mechanics, 2016, 803, 250-274.	3.4	8
294	The oxidation of the novel lignocellulosic biofuel γ-valerolactone in a low pressure flame. Proceedings of the Combustion Institute, 2017, 36, 577-585.	3.9	8
295	Analysis of premixed flame kernel/turbulence interactions under engine conditions based on direct numerical simulation data. Journal of Fluid Mechanics, 2020, 885, .	3.4	8
296	Dissipation element analysis of non-premixed jet flames. Journal of Fluid Mechanics, 2020, 905, .	3.4	8
297	Effects of stretch and radiation on the laminar burning velocity of R-32/air flames. Science and Technology for the Built Environment, 2020, 26, 599-609.	1.7	8
298	Modeling subfilter soot-turbulence interactions in Large Eddy Simulation: An a priori study. Proceedings of the Combustion Institute, 2021, 38, 2783-2790.	3.9	8
299	Adjoint-based sensitivity analysis of steady char burnout. Combustion Theory and Modelling, 2021, 25, 96-120.	1.9	8
300	Data-driven subfilter modelling of thermo-diffusively unstable hydrogen–air premixed flames. Combustion Theory and Modelling, 2021, 25, 1064-1085.	1.9	8
301	Oxygenated PAH Formation Chemistry Investigation in Anisole Jet Stirred Reactor Oxidation by a Thermodynamic Approach. Energy & amp; Fuels, 2021, 35, 1535-1545.	5.1	8
302	Large-Eddy Ssimulations of a Separated Plane Diffuser. , 2005, , .		7
303	Shedding new light on a burning question. Journal of Fluid Mechanics, 2010, 658, 1-4.	3.4	7
304	Large-Eddy Simulation Study on Unsteady Effects in a Statistically Stationary SI Engine Port Flow. , 2015, , .		7
305	Unraveling the high reactivity of 3-methyltetrahydrofuran over 2-methyltetrahydrofuran through kinetic modeling and experiments. Proceedings of the Combustion Institute, 2019, 37, 221-230.	3.9	7
306	Towards Clean Propulsion with Synthetic Fuels: Computational Aspects and Analysis. , 2019, , 185-207.		7

#	Article	IF	CITATIONS
307	Dissipation Element Analysis of Turbulent Premixed Jet Flames. Combustion Science and Technology, 2019, 191, 1677-1692.	2.3	7
308	Magnetic control of flame stability: Application to oxygen-enriched and carbon dioxide-diluted sooting flames. Proceedings of the Combustion Institute, 2019, 37, 5637-5644.	3.9	7
309	Systematic assessment of the Method of Moments with Interpolative Closure and guidelines for its application to soot particle dynamics in laminar and turbulent flames. Combustion and Flame, 2020, 214, 450-463.	5.2	7
310	Combined isochoric and isobaric acquisition methodology for accurate flame speed measurements from ambient to high pressures and temperatures. Proceedings of the Combustion Institute, 2021, 38, 2185-2193.	3.9	7
311	Simultaneous production of ketohydroperoxides from low temperature oxidation of a gasoline primary reference fuel mixture. Fuel, 2021, 288, 119737.	6.4	7
312	A CONSERVATIVE FRAMEWORK FOR PRIMARY ATOMIZATION COMPUTATION AND APPLICATION TO THE STUDY OF NOZZLE AND DENSITY RATIO EFFECTS. Atomization and Sprays, 2013, 23, 1139-1165.	0.8	7
313	Data reduction considerations for spherical R-32(CH2F2)-air flame experiments. Combustion and Flame, 2022, 237, 111806.	5.2	7
314	Adaptation and Engine Validation of an FTIR Exhaust Gas Analysis Method for C1-Based Potential GHG-Neutral Synthetic Fuels/Gasoline-Blends Containing Dimethyl Carbonate and Methyl Formate. , 0, ,		7
315	Effect of methyl substituents, ring size, and oxygen on bond dissociation energies and ring-opening kinetics of five- and six-membered cyclic acetals. Combustion and Flame, 2022, 242, 112211.	5.2	7
316	Integrated RANS-LES Computations in Gas Turbines: Compressor-Diffusor Coupling. , 2004, , .		6
317	Integrated Simulations of a Compressor/Combustor Assembly of a Gas Turbine Engine. , 2005, , 971.		6
318	Integrated Computations of an Entire Jet Engine. , 2007, , 1841.		6
319	Monte Carlo-Based Approach for Simulating Nanostructured Catalytic and Electrocatalytic Systems. Computing in Science and Engineering, 2012, 14, 60-69.	1.2	6
320	A numerical study of highly-diluted, burner-stabilised dimethyl etherÂflames. Combustion Theory and Modelling, 2015, 19, 238-259.	1.9	6
321	LES of Internal Combustion Engine Flows Using Cartesian Overset Grids. Oil and Gas Science and Technology, 2017, 72, 36.	1.4	6
322	Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine. , 0, , .		6
323	Analysis of a Quasi-Two-Dimensional Flamelet Model on a Three-Feed Non-premixed Oxy-Combustion Burner. Flow, Turbulence and Combustion, 2022, 108, 303-327.	2.6	6
324	3D modeling framework and investigation of pollutant formation in a condensing gas boiler. Fuel, 2021, 300, 120916.	6.4	6

#	Article	IF	CITATIONS
325	Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library. , 0, , .		6
326	Exploring the combustion chemistry of anisole in laminar counterflow diffusion-flames under oxy-fuel conditions. Combustion and Flame, 2021, , 111929.	5.2	6
327	Integrated Simulations for Multi-Component Analysis of Gas Turbines:RANS Boundary Conditions. , 2004, , .		5
328	LES of a Non-Premixed Flame Using an Extended Flamelet/Progress Variable Model. , 2005, , .		5
329	Integrated LES-RANS of an Entire High-Spool of a Gas Turbine. , 2006, , .		5
330	Generalised higher-order Kolmogorov scales. Journal of Fluid Mechanics, 2016, 794, 233-251.	3.4	5
331	Assessment of the Approximation Formula for the Calculation of Methane/Air Laminar Burning Velocities Used in Engine Combustion Models. , 0, , .		5
332	Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner. Combustion Science and Technology, 2023, 195, 1-17.	2.3	5
333	Laminar Burning Velocity of Market Type Gasoline Surrogates as a Performance Indicator in Internal Combustion Engines. , 0, , .		5
334	Unsupervised learning and nonlinear identification for in-cylinder pressure prediction of diesel combustion rate shaping process. IFAC-PapersOnLine, 2019, 52, 199-203.	0.9	5
335	A Methane Mechanism for Oxy-Fuel Combustion: Extinction Experiments, Model Validation, and Kinetic Analysis. Flow, Turbulence and Combustion, 2021, 106, 499-514.	2.6	5
336	The effect of fuel composition and Reynolds number on soot formation processes in turbulent non-premixed toluene jet flames. Proceedings of the Combustion Institute, 2021, 38, 1395-1402.	3.9	5
337	Investigation of nitric oxide formation in methane, methane/propane, and methane/hydrogen flames under condensing gas boiler conditions. Applications in Energy and Combustion Science, 2021, 5, 100014.	1.5	5
338	Analysis of structure function equations up to the seventh order. Journal of Turbulence, 2017, 18, 1001-1032.	1.4	5
339	Large-Eddy Simulation of Turbulent Reacting Flows. , 2008, , .		4
340	A multi-zone combustion model with detailed chemistry including cycle-to-cycle dynamics for diesel engine control design. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225, 1235-1252.	1.9	4
341	A quasi-one-dimensional model for an outwardly opening poppet-type direct gas injector for internal combustion engines. International Journal of Engine Research, 2020, 21, 1493-1519.	2.3	4
342	A-priori and a-posteriori studies of a direct moment closure approach for turbulent combustion using DNS data of a premixed flame. Proceedings of the Combustion Institute, 2021, 38, 3003-3011.	3.9	4

#	Article	IF	CITATIONS
343	Towards Prediction of Turbulent Flows at High Reynolds Numbers Using High Performance Computing Data and Deep Learning. Lecture Notes in Computer Science, 2018, , 614-623.	1.3	4
344	Experimental and Numerical Investigation of the Maximum Pressure Rise Rate for an LTC Concept in a Single Cylinder CI Engine. , 0, , .		4
345	First-principles-based Reaction Kinetics Model for Oxygen Reduction Reaction on Pt3Ni(111). ECS Transactions, 2009, 25, 1353-1361.	0.5	3
346	Damköhler Number Similarity for Static Flame Stability in Gaseous-Fueled Augmentor Flows. Combustion Science and Technology, 2011, 183, 718-737.	2.3	3
347	Actuation Studies for Active Control of Mild Combustion for Gas Turbine Application. , 2014, , .		3
348	Reactive linearized equations of perturbed compressible variables for low-Mach number variable-density flows. Journal of Computational Physics, 2015, 281, 1-27.	3.8	3
349	Streamline segment scaling behavior in a turbulent wavy channel flow. Experiments in Fluids, 2017, 58, 1.	2.4	3
350	Large-Eddy Simulation and Detailed Modeling of Soot Evolution in a Model Aero Engine Combustor. , 2017, , .		3
351	Deactivation reactions on a commercial lean nox-trap - Effect of hydrocarbon nature, concentration and operation temperature. Applied Catalysis A: General, 2019, 585, 117178.	4.3	3
352	Simulation and Modeling of Direct Gas Injection through Poppet-type Outwardly-opening Injectors in Internal Combustion Engines. Energy, Environment, and Sustainability, 2019, , 65-115.	1.0	3
353	Hybrid scheme for complex flows on staggered grids and application to multiphase flows. Journal of Computational Physics, 2023, 474, 108478.	3.8	3
354	Effects of C1-C3 hydrocarbon blending on aromatics formation in 1-butene counterflow flames. Combustion and Flame, 2021, 230, 111427.	5.2	3
355	Development of a Modified Joback–Reid Group Contribution Method to Predict the Sooting Tendency of Oxygenated Fuels. Energy & Fuels, 2021, 35, 13144-13158.	5.1	3
356	Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description. , 0, , .		3
357	Potential and Challenges of MILD Combustion Control for Gas Turbine Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 181-195.	0.3	3
358	Development of a Model for Predicting the Knock Boundary in Consideration of Cooled Exhaust Gas Recirculation at Full Load. , 2018, , 143-185.		3
359	A reduced-order model for multiphase simulation of transient inert sprays in the context of compression ignition engines. International Journal of Multiphase Flow, 2022, 147, 103872.	3.4	3
360	Low temperature oxidation of toluene in an n-heptane/toluene mixture. Combustion and Flame, 2022, 242, 112200.	5.2	3

#	Article	IF	CITATIONS
361	A three-dimensional cell-based volume-of-fluid method for conservative simulations of primary atomization. Journal of Computational Physics, 2022, 465, 111374.	3.8	3
362	Numerical Applicability of Different Sound Source Formulations to Compute Combustion Noise Using Acoustic Perturbation Equations for Reacting Flows. , 2008, , .		2
363	A Multi-dimensional Flamelet Model Framework Applied to Split-injection DI Diesel Engines. , 2009, , .		2
364	Parametric Study of Primary Breakup of Turbulent Liquid Jets in Crossflow: Role of Weber number. , 2010, , .		2
365	On a robust ALE method with discrete primary and secondary conservation. Journal of Computational Physics, 2013, 254, 1-7.	3.8	2
366	Numerical Simulations and Experiments of Ignition of Solid Particles in a Laminar Burner: Effects of Slip Velocity and Particle Swelling. Flow, Turbulence and Combustion, 2021, 106, 515-531.	2.6	2
367	Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model. , 0, , .		2
368	Development of a Fast-Running Injector Model with Artificial Neural Network (ANN) for the Prediction of Injection Rate with Multiple Injections. , 0, , .		2
369	Overlapping of Communication and Computation in nb3dfft for 3D Fast Fourier Transformations. Lecture Notes in Computer Science, 2017, , 151-159.	1.3	2
370	Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Li</mml:mi><mml: mathvariant="normal">O</mml: </mml:mrow><mml:mn>2</mml:mn></mml:msub> batteries. Physical Review Materials, 2017, 1, .</mml:math 	mtext#â^'<	/mr al: mtext><
371	Large-eddy simulation of premixed turbulent combustion. , 2003, , 1096-1099.		2
372	Towards an Integral Combustion Model for Model-Based Control of PCCI Engines. , 0, , .		2
373	A reduced-order model for turbulent reactive sprays in compression ignition engines. Combustion and Flame, 2022, 236, 111751.	5.2	2
374	Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry. SAE International Journal of Engines, 0, 13, .	0.4	2
375	Predictive Data-Driven Model Based on Generative Adversarial Network for Premixed Turbulence-Combustion Regimes. Combustion Science and Technology, 0, , 1-24.	2.3	2
376	Anti-Aliasing for Integrated LES-RANS Computations. , 2004, , .		1
377	A Computational and Experimental Assessment of the Damkohler Number Similarity for Static Flame Stability in Augmentor Flows. , 2008, , .		1
378	Study of Combustion Instabilities Imposed by Inlet Velocity Disturbance in Combustor Using LES. , 2009,		1

,.

#	Article	IF	CITATIONS
379	Professor Norbert Peters 10 July 1942–4 July 2015. Journal of Fluid Mechanics, 2015, 781, 1-2.	3.4	1
380	Modeling and Numerical Investigation of Auto-Ignition and Megaknock in Boosted Gasoline Engines. , 2017, , .		1
381	Symposium for Combustion Control 2016. International Journal of Engine Research, 2018, 19, 151-152.	2.3	1
382	Symposium for combustion control 2017 and 2018 special issue. International Journal of Engine Research, 2019, 20, 1003-1004.	2.3	1
383	Molecular-beam mass spectrometry study of oxy-combustion in a novel coal-plate experiment. Proceedings of the Combustion Institute, 2019, 37, 2801-2808.	3.9	1
384	Gradient Trajectory Analysis of the Burning Rate in Turbulent Premixed Jet Flames. Combustion Science and Technology, 2020, 192, 2189-2207.	2.3	1
385	Lagrangian Analysis of Mixing and Soot Transport in a Turbulent Jet Flame. ERCOFTAC Series, 2015, , 503-509.	0.1	1
386	Large-eddy simulation of premixed turbulent combustion. , 2003, , 1096-1099.		1
387	Unsupervised Data Analysis of Direct Numerical Simulation of a Turbulent Flame via Local Principal Component Analysis and Procustes Analysis. Advances in Intelligent Systems and Computing, 2021, , 460-469.	0.6	1
388	Potential analysis and virtual development of SI Engines operated with DMC+. Proceedings, 2020, , 49-74.	0.3	1
389	Experimental Investigation of the Pressure Dependence of Iso-Octane Combustion. Frontiers in Energy Research, 2022, 10, .	2.3	1
390	A Numerical Simulation of Soot Formation in Spray Flames. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 1570-1577.	0.2	0
391	An algorithm for mass matrix calculation of internally constrained molecular geometries. Journal of Chemical Physics, 2008, 128, 044113.	3.0	Ο
392	First-principles-based Reaction Kinetics Model for Oxygen Reduction Reaction on Pt3Ni(111). ECS Meeting Abstracts, 2009, , .	0.0	0
393	Professor Norbert Peters (19422015). Combustion and Flame, 2015, 162, 3447-3448.	5.2	Ο
394	Reduced Chemical Mechanism for the Calculation of Ethanol / Air Flame Speeds. , 2015, , .		0
395	Titelbild: Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns (Angew. Chem. 20/2017). Angewandte Chemie, 2017, 129, 5457-5457.	2.0	0
396	On the use of oscillating jet flames in a coflow to develop soot models for practical applications. Proceedings of the Combustion Institute, 2021, 38, 1309-1317.	3.9	0

#	Article	IF	CITATIONS
397	On Parallelization Strategies for Multiple Representative Interactive Flamelets Combustion Models. , 2021, , 279-293.		0
398	Unsteady CFD Simulation of an Entire Gas Turbine High-Spool. , 2006, , .		0
399	A Posteriori Analysis of Numerical Errors in Computing Scalar Variance. ERCOFTAC Series, 2011, , 121-130.	0.1	0
400	Large-Eddy Simulation of the Darmstadt TSF-Burner. , 2012, , .		0
401	Greybox modeling of the diesel combustion by use of the scalar dissipation rate. , 2013, , .		0
402	Spray Phenomena of Surrogate Fuels and Oxygenated Blends in a High Pressure Chamber. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 1-17.	0.3	0
403	Potential analysis and virtual development of SI engines operated with DMC+. Proceedings, 2020, , 423-436.	0.3	0
404	The influence of adversarial training on turbulence closure modeling. , 2022, , .		0