Alessio Cimmino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138243/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Lycorine, the Main Phenanthridine Amaryllidaceae Alkaloid, Exhibits Significant Antitumor Activity in Cancer Cells That Display Resistance to Proapoptotic Stimuli: An Investigation of Structureâ^'Activity Relationship and Mechanistic Insight. Journal of Medicinal Chemistry, 2009, 52, 6244-6256.	2.9	214
2	Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases. Toxins, 2011, 3, 1569-1605.	1.5	167
3	Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Natural Product Reports, 2015, 32, 1629-1653.	5.2	141
4	Fungal metabolites with anticancer activity. Natural Product Reports, 2014, 31, 617-627.	5.2	140
5	Amaryllidaceae Alkaloids Belonging to Different Structural Subgroups Display Activity against Apoptosis-Resistant Cancer Cells. Journal of Natural Products, 2010, 73, 1223-1227.	1.5	119
6	Absolute Configurations of Fungal and Plant Metabolites by Chiroptical Methods. ORD, ECD, and VCD Studies on Phyllostin, Scytolide, and Oxysporone. Journal of Natural Products, 2013, 76, 588-599.	1.5	111
7	<i>Lysobacter capsici</i> AZ78 produces cyclo(<scp>l</scp> -Pro- <scp>l</scp> -Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of <i>Phytophthora infestans</i> and <i>Plasmopara viticola</i> . Journal of Applied Microbiology, 2014, 117, 1168-1180.	1.4	110
8	Phenazines and cancer. Natural Product Reports, 2012, 29, 487.	5.2	107
9	Bacteriophage-Resistant Staphylococcus aureus Mutant Confers Broad Immunity against Staphylococcal Infection in Mice. PLoS ONE, 2010, 5, e11720.	1.1	91
10	Stagonolides Bâ^'F, Nonenolides Produced by <i>Stagonospora cirsii</i> , a Potential Mycoherbicide of <i>Cirsium arvense</i> . Journal of Natural Products, 2008, 71, 31-34.	1.5	85
11	Inuloxins A–D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: Potential for broomrapes and field dodder management. Phytochemistry, 2013, 86, 112-120.	1.4	80
12	Herbicidal Potential of Ophiobolins Produced byDrechslera gigantea. Journal of Agricultural and Food Chemistry, 2006, 54, 1779-1783.	2.4	73
13	Stagonolides Gâ^'l and Modiolide A, Nonenolides Produced by <i>Stagonospora cirsii</i> , a Potential Mycoherbicide for <i>Cirsium arvense</i> . Journal of Natural Products, 2008, 71, 1897-1901.	1.5	68
14	Gulypyrones A and B and Phomentrioloxins B and C Produced by <i>Diaporthe gulyae</i> , a Potential Mycoherbicide for Saffron Thistle (<i>Carthamus lanatus</i>). Journal of Natural Products, 2015, 78, 623-629.	1.5	65
15	Regiolone and Isosclerone, Two Enantiomeric Phytotoxic Naphthalenone Pentaketides: Computational Assignment of Absolute Configuration and Its Relationship with Phytotoxic Activity. European Journal of Organic Chemistry, 2011, 2011, 5564-5570.	1.2	60
16	Toward a Cancer Drug of Fungal Origin. Medicinal Research Reviews, 2015, 35, 937-967.	5.0	59
17	Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality, 2017, 29, 486-499.	1.3	56
18	Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-Ungeremine microbeads. Carbohydrate Polymers, 2018, 195, 631-641.	5.1	55

#	Article	IF	CITATIONS
19	Chenopodolin: A Phytotoxic Unrearranged <i>ent</i> -Pimaradiene Diterpene Produced by <i>Phoma chenopodicola</i> , a Fungal Pathogen for <i>Chenopodium album</i> Biocontrol. Journal of Natural Products, 2013, 76, 1291-1297.	1.5	54
20	Diplopimarane, a 20 <i>-nor-ent</i> -Pimarane Produced by the Oak Pathogen <i>Diplodia quercivora</i> . Journal of Natural Products, 2014, 77, 2352-2360.	1.5	54
21	Production of Phytotoxins byPhoma exiguavar.exigua, a Potential Mycoherbicide against Perennial Thistles. Journal of Agricultural and Food Chemistry, 2008, 56, 6304-6309.	2.4	53
22	Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees. Current Medicinal Chemistry, 2018, 25, 208-252.	1.2	53
23	Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Letters, 2009, 50, 6955-6958.	0.7	52
24	Advances on Fungal Phytotoxins and Their Role in Grapevine Trunk Diseases. Journal of Agricultural and Food Chemistry, 2018, 66, 5948-5958.	2.4	52
25	Ophiobolin E and 8-epi-ophiobolin J produced by Drechslera gigantea, a potential mycoherbicide of weedy grasses. Phytochemistry, 2006, 67, 2281-2287.	1.4	49
26	Polyphenols, Including the New Peapolyphenols Aâ ^{~°} C, from Pea Root Exudates Stimulate Orobanche foetida Seed Germination. Journal of Agricultural and Food Chemistry, 2010, 58, 2902-2907.	2.4	49
27	Sesterterpenoids with Anticancer Activity. Current Medicinal Chemistry, 2015, 22, 3502-3522.	1.2	49
28	Investigations of Fungal Secondary Metabolites with Potential Anticancer Activity. Journal of Natural Products, 2010, 73, 969-971.	1.5	48
29	Cyclopaldic Acid, Seiridin, and Sphaeropsidin A as Fungal Phytotoxins, and Larvicidal and Biting Deterrents against <i>Aedes aegypti</i> (Diptera: Culicidae): StructureActivity Relationships. Chemistry and Biodiversity, 2013, 10, 1239-1251.	1.0	48
30	<i>In Vitro</i> Growth Inhibitory Effects of Cytochalasins and Derivatives in Cancer Cells. Planta Medica, 2011, 77, 711-717.	0.7	46
31	Lasiojasmonates A–C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry, 2014, 103, 145-153.	1.4	45
32	Application of Mosher's method for absolute configuration assignment to bioactive plants and fungi metabolites. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144, 59-89.	1.4	45
33	Interaction between Pseudomonas savastanoi pv. savastanoi and Pantoea agglomerans in olive knots. Plant Pathology, 2006, 55, 614-624.	1.2	44
34	Phyllostictines A–D, oxazatricycloalkenones produced by Phyllosticta cirsii, a potential mycoherbicide for Cirsium arvense biocontrol. Tetrahedron, 2008, 64, 1612-1619.	1.0	44
35	Cyclobotryoxide, a Phytotoxic Metabolite Produced by the Plurivorous Pathogen <i>Neofusicoccum australe</i> . Journal of Natural Products, 2012, 75, 1785-1791.	1.5	44
36	The Effect of Stereochemistry on the Biological Activity of Natural Phytotoxins, Fungicides, Insecticides and Herbicides. Chirality, 2013, 25, 59-78.	1.3	44

#	Article	IF	CITATIONS
37	Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Natural Product Research, 2013, 27, 956-966.	1.0	44
38	Effect of Fungal and Plant Metabolites on Broomrapes (<i>Orobanche</i> and <i>Phelipanche</i> spp.) Seed Germination and Radicle Growth. Journal of Agricultural and Food Chemistry, 2014, 62, 10485-10492.	2.4	43
39	Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality, 2011, 23, 674-693.	1.3	42
40	Phomentrioloxin: A Phytotoxic Pentasubstituted Geranylcyclohexentriol Produced by <i>Phomopsis</i> sp., a Potential Mycoherbicide for <i>Carthamus lanatus</i> Biocontrol. Journal of Natural Products, 2012, 75, 1130-1137.	1.5	42
41	A Survey of Phytotoxic Microbial and Plant Metabolites as Potential Natural Products for Pest Management. Chemistry and Biodiversity, 2010, 7, 2261-2280.	1.0	41
42	Soyasapogenol B and <i>trans</i> â€22â€dehydrocam―pesterol from common vetch (<i>Vicia sativa</i> L.) root exudates stimulate broomrape seed germination. Pest Management Science, 2011, 67, 1015-1022.	1.7	41
43	The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway. Journal of Experimental Botany, 2018, 69, 3095-3102.	2.4	41
44	Identification of the Main Toxins Isolated from <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> Race 2 and Their Relation with Isolates' Pathogenicity. Journal of Agricultural and Food Chemistry, 2014, 62, 2574-2580.	2.4	40
45	<i>In Vitro</i> Antibacterial Activity of Sphaeropsidins and Chemical Derivatives toward <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> , the Causal Agent of Rice Bacterial Blight. Journal of Natural Products, 2011, 74, 2520-2525.	1.5	39
46	Hellebrin and its aglycone form hellebrigenin display similar in vitro growth inhibitory effects in cancer cells and binding profiles to the alpha subunits of the Na+/K+-ATPase. Molecular Cancer, 2013, 12, 33.	7.9	39
47	Colletochlorins E and F, New Phytotoxic Tetrasubstituted Pyran-2-one and Dihydrobenzofuran, Isolated from <i>Colletotrichum higginsianum</i> with Potential Herbicidal Activity. Journal of Agricultural and Food Chemistry, 2017, 65, 1124-1130.	2.4	39
48	Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of <i>Lasiodiplodia</i> Species in Brazil. Journal of Agricultural and Food Chemistry, 2017, 65, 1102-1107.	2.4	39
49	Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biological Control, 2011, 58, 133-138.	1.4	38
50	Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cellular and Molecular Life Sciences, 2015, 72, 3731-3746.	2.4	38
51	Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by <i>Colletotrichum higginsianum</i> , with <i>in Vitro</i> Cytostatic Activity. Journal of Natural Products, 2016, 79, 116-125.	1.5	38
52	Phytotoxins produced by pathogenic fungi of agrarian plants. Phytochemistry Reviews, 2019, 18, 843-870.	3.1	38
53	Inhibition of Orobanche crenata Seed Germination and Radicle Growth by Allelochemicals Identified in Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 9797-9803.	2.4	37
54	Ungeremine and Its Hemisynthesized Analogues as Bactericides against Flavobacterium columnare. Journal of Agricultural and Food Chemistry, 2013, 61, 1179-1183.	2.4	37

#	Article	IF	CITATIONS
55	Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry, 2015, 117, 482-488.	1.4	37
56	Bisorbicillinoids Produced by the Fungus Trichoderma citrinoviride Affect Feeding Preference of the Aphid Schizaphis graminum. Journal of Chemical Ecology, 2009, 35, 533-541.	0.9	36
57	Fungal metabolite ophiobolin A as a promising anti-glioma agent: In vivo evaluation, structure–activity relationship and unique pyrrolylation of primary amines. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4544-4548.	1.0	36
58	Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity. Chirality, 2018, 30, 1115-1134.	1.3	36
59	Funiculosone, a substituted dihydroxanthene-1,9-dione with two of its analogues produced by an endolichenic fungus Talaromyces funiculosus and their antimicrobial activity. Phytochemistry, 2019, 157, 175-183.	1.4	36
60	Phyllostoxin and Phyllostin, Bioactive Metabolites Produced by Phyllosticta cirsii, a Potential Mycoherbicide for Cirsium arvense Biocontrol. Journal of Agricultural and Food Chemistry, 2008, 56, 884-888.	2.4	35
61	Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with inÂvitro growth inhibitory activity inÂhuman cancer cell lines. Tetrahedron, 2013, 69, 7466-7470.	1.0	34
62	Chenopodolans A–C: Phytotoxic furopyrans produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry, 2013, 96, 208-213.	1.4	34
63	Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies. Phytochemistry, 2015, 116, 359-366.	1.4	34
64	Stimulation of Seed Germination of Orobanche Species by Ophiobolin A and Fusicoccin Derivatives. Journal of Agricultural and Food Chemistry, 2008, 56, 8343-8347.	2.4	33
65	Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. International Journal of Oncology, 2013, 43, 575-585.	1.4	33
66	Bioactive Secondary Metabolites Produced by the Oak Pathogen <i>Diplodia corticola</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 217-225.	2.4	33
67	Importance and Difficulties in the Use of Chiroptical Methods to Assign the Absolute Configuration of Natural Products: The Case of Phytotoxic Pyrones and Furanones Produced by <i>Diplodia corticola</i> . Journal of Natural Products, 2017, 80, 2406-2415.	1.5	33
68	Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: Study of a novel bioactive polymeric based system. European Polymer Journal, 2017, 94, 230-247.	2.6	33
69	Plant Growth Promotion Function of Bacillus sp. Strains Isolated from Salt-Pan Rhizosphere and Their Biocontrol Potential against Macrophomina phaseolina. International Journal of Molecular Sciences, 2021, 22, 3324.	1.8	33
70	Phytotoxic α-pyrones produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. Journal of Antibiotics, 2012, 65, 203-206.	1.0	32
71	Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.)—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis. Molecules, 2016, 21, 1432.	1.7	32
72	Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. FA¬toterapA¬A¢, 2017, 116, 34-38.	1.1	32

#	Article	IF	CITATIONS
73	Thermoplastic starch and bioactive chitosan sub-microparticle biocomposites: Antifungal and chemico-physical properties of the films. Carbohydrate Polymers, 2020, 230, 115627.	5.1	32
74	Fusicoccin A, a Phytotoxic Carbotricyclic Diterpene Glucoside of Fungal Origin, Reduces Proliferation and Invasion of Glioblastoma Cells by Targeting Multiple Tyrosine Kinases. Translational Oncology, 2013, 6, 112-123.	1.7	31
75	Agropyrenol, a Phytotoxic Fungal Metabolite, and Its Derivatives: A Structure–Activity Relationship Study. Journal of Agricultural and Food Chemistry, 2013, 61, 1779-1783.	2.4	31
76	Pinolide, a New Nonenolide Produced by Didymella pinodes, the Causal Agent of Ascochyta Blight on Pisum sativum. Journal of Agricultural and Food Chemistry, 2012, 60, 5273-5278.	2.4	30
77	Phytotoxic metabolites by nine species of Botryosphaeriaceae involved in grapevine dieback in Australia and identification of those produced by <i>Diplodia mutila</i> , <i>Diplodia seriata</i> , <i>Neofusicoccum australe</i> and <i>Neofusicoccum luteum</i> . Natural Product Research, 2019, 33, 2223-2229.	1.0	30
78	Antimicrobial secondary metabolites of an endolichenic <i>Aspergillus niger</i> isolated from lichen thallus of <i>Parmotrema ravum</i> . Natural Product Research, 2020, 34, 2573-2580.	1.0	30
79	Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. Phytochemistry, 2012, 77, 245-250.	1.4	29
80	Pyrenophoric Acid, a Phytotoxic Sesquiterpenoid Penta-2,4-dienoic Acid Produced by a Potential Mycoherbicide, <i>Pyrenophora semeniperda</i> . Journal of Natural Products, 2014, 77, 925-930.	1.5	29
81	Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol. Tetrahedron, 2014, 70, 1497-1501.	1.0	29
82	Absolute configurations of phytotoxic inuloxins B and C based on experimental and computational analysis of chiroptical properties. Phytochemistry, 2016, 130, 328-334.	1.4	29
83	Induction of Haustorium Development by Sphaeropsidones in Radicles of the Parasitic Weeds <i>Striga</i> and <i>Orobanche</i> . A Structure–Activity Relationship Study. Journal of Agricultural and Food Chemistry, 2016, 64, 5188-5196.	2.4	29
84	Absolute configurations of chiral molecules with multiple stereogenic centers without prior knowledge of the relative configurations: A case study of inuloxin C. Chirality, 2018, 30, 1206-1214.	1.3	29
85	A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. Open Chemistry, 2017, 15, 156-166.	1.0	28
86	Isolation and Characterization of an Endophytic Fungus Colletotrichum coccodes Producing Tyrosol From Houttuynia cordata Thunb. Using ITS2 RNA Secondary Structure and Molecular Docking Study. Frontiers in Bioengineering and Biotechnology, 2021, 9, 650247.	2.0	28
87	Botrytone, a New Naphthalenone Pentaketide Produced by Botrytis fabae, the Causal Agent of Chocolate Spot Disease on Vicia faba. Journal of Agricultural and Food Chemistry, 2011, 59, 9201-9206.	2.4	27
88	Evaluation of in vitro anticancer activity of sphaeropsidins A–C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. Phytochemistry Letters, 2012, 5, 770-775.	0.6	27
89	Agropyrenol and agropyrenal, phytotoxins from Ascochyta agropyrina var. nana, a fungal pathogen of Elitrigia repens. Phytochemistry, 2012, 79, 102-108.	1.4	27
90	A New Flow Cytometry Technique to Identify <i>Phaeomoniella chlamydospora</i> Exopolysaccharides and Study Mechanisms of Esca Grapevine Foliar Symptoms. Plant Disease, 2009, 93, 680-684.	0.7	26

#	Article	IF	CITATIONS
91	Pyrenophoric Acids B and C, Two New Phytotoxic Sesquiterpenoids Produced byPyrenophora semeniperda. Journal of Agricultural and Food Chemistry, 2014, 62, 10304-10311.	2.4	26
92	Further secondary metabolites produced by Diplodia corticola, a fungal pathogen involved in cork oak decline. Tetrahedron, 2016, 72, 6788-6793.	1.0	26
93	Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Microbiological Research, 2017, 199, 49-56.	2.5	26
94	Fungal Metabolites Antagonists towards Plant Pests and Human Pathogens: Structure-Activity Relationship Studies. Molecules, 2018, 23, 834.	1.7	26
95	Radicinin, a Fungal Phytotoxin as a Target-Specific Bioherbicide for Invasive Buffelgrass (Cenchrus) Tj ETQq1 1 0.	784314 rg 1.7	BT_/Overlock
96	Ryecyanatines A and B and ryecarbonitrilines A and B, substituted cyanatophenol, cyanatobenzo[1,3]dioxole, and benzo[1,3]dioxolecarbonitriles from rye (Secale cereale L.) root exudates: Novel metabolites with allelopathic activity on Orobanche seed germination and radicle growth. Phytochemistry, 2015, 109, 57-65.	1.4	25
97	Glanduliferins A and B, two new glucosylated steroids from Impatiens glandulifera, with in vitro growth inhibitory activity in human cancer cells. F¬toterap¬¢, 2016, 109, 138-145.	1.1	25
98	Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. South African Journal of Botany, 2019, 126, 277-281.	1.2	25
99	Encapsulation of inuloxin A, a plant germacrane sesquiterpene with potential herbicidal activity, in β-cyclodextrins. Organic and Biomolecular Chemistry, 2019, 17, 2508-2515.	1.5	25
100	Papyracillic Acid, a Phytotoxic 1,6-Dioxaspiro[4,4]nonene Produced by Ascochyta agropyrina Var. <i>nana</i> , a Potential Mycoherbicide for Elytrigia repens Biocontrol. Journal of Agricultural and Food Chemistry, 2009, 57, 11168-11173.	2.4	24
101	Cochliotoxin, a Dihydropyranopyran-4,5-dione, and Its Analogues Produced byCochliobolus australiensisDisplay Phytotoxic Activity against Buffelgrass (Cenchrus ciliaris). Journal of Natural Products, 2017, 80, 1241-1247.	1.5	24
102	Chloromonilinic Acids C and D, Phytotoxic Tetrasubstituted 3-Chromanonacrylic Acids Isolated from <i>Cochliobolus australiensis</i> with Potential Herbicidal Activity against Buffelgrass (<i>Cenchrus) Tj ETQq0 0</i>	0 ngsBT /O	ve dø ck 10 Tf
103	A green and efficient synthesis of furo[3,4â€ <i>e</i>]pyrazolo[3,4â€ <i>b</i>]â€pyridine derivatives in water under microwave irradiation without catalyst. Journal of Heterocyclic Chemistry, 2008, 45, 1103-1108.	1.4	23
104	Lentisone, a New Phytotoxic Anthraquinone Produced by Ascochyta lentis, the Causal Agent of Ascochyta Blight in Lens culinaris. Journal of Agricultural and Food Chemistry, 2013, 61, 7301-7308.	2.4	23
105	Cyclo(L-PRO-L-TYR), The Fungicide Isolated From Lysobacter Capsici AZ78: A Structure–Activity Relationship Study. Chemistry of Heterocyclic Compounds, 2014, 50, 290-295.	0.6	23
106	Jonquailine, a new pretazettine-type alkaloid isolated from Narcissus jonquilla quail, with activity against drug-resistant cancer. Fìtoterapìâ, 2015, 102, 41-48.	1.1	23
107	Pisatin involvement in the variation of inhibition of <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> spore germination by root exudates of <i>Pisum</i> spp. germplasm. Plant Pathology, 2018, 67, 1046-1054.	1.2	22
108	<i>Hibiscus syriacus</i> Extract from an Established Cell Culture Stimulates Skin Wound Healing. BioMed Research International, 2017, 2017, 1-9.	0.9	21

#	Article	IF	CITATIONS
109	Antimould microbial and plant metabolites with potential use in intelligent food packaging. Natural Product Research, 2018, 32, 1605-1610.	1.0	21
110	Phytotoxic Metabolites Produced by <i>Diaporthella cryptica</i> , the Causal Agent of Hazelnut Branch Canker. Journal of Agricultural and Food Chemistry, 2018, 66, 3435-3442.	2.4	20
111	Anti-proliferative and pro-apoptotic effects of Uncaria tomentosa aqueous extract in squamous carcinoma cells. Journal of Ethnopharmacology, 2018, 211, 285-294.	2.0	20
112	Lentiquinones A, B, and C, Phytotoxic Anthraquinone Derivatives Isolated from <i>Ascochyta lentis</i> , a Pathogen of Lentil. Journal of Natural Products, 2018, 81, 2700-2709.	1.5	20
113	Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid (<i>Acyrthosiphon pisum</i>) as potential biocontrol strategy. Natural Product Research, 2019, 33, 2471-2479.	1.0	20
114	Have lichenized fungi delivered promising anticancer small molecules?. Phytochemistry Reviews, 2019, 18, 1-36.	3.1	19
115	Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Natural Product Communications, 2014, 9, 401-8.	0.2	19
116	The structure of the O-specific polysaccharide of the lipopolysaccharide from Pantoea agglomerans strain FL1. Carbohydrate Research, 2008, 343, 392-396.	1.1	18
117	Heterogeneity of <i><scp>P</scp>seudomonas savastanoi</i> populations infecting <i><scp>M</scp>yrtus communis</i> in <scp>S</scp> ardinia (<scp>I</scp> taly). Plant Pathology, 2014, 63, 277-289.	1.2	18
118	Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid and <i>epi</i> â€epoformin. Pest Management Science, 2017, 73, 1161-1168.	1.7	18
119	Isolation of Phytotoxic Phenols and Characterization of a New 5-Hydroxymethyl-2-isopropoxyphenol from <i>Dothiorella vidmadera</i> , a Causal Agent of Grapevine Trunk Disease. Journal of Agricultural and Food Chemistry, 2018, 66, 1760-1764.	2.4	18
120	α-costic acid, a plant sesquiterpenoid from Dittrichia viscosa, as modifier of Poly (lactic acid) properties: a novel exploitation of the autochthone biomass metabolite for a wholly biodegradable system. Industrial Crops and Products, 2020, 146, 112134.	2.5	18
121	Pyriculins A and B, two monosubstituted hexâ€4â€eneâ€2,3â€diols and other phytotoxic metabolites produced by <i>Pyricularia grisea</i> isolated from buffelgrass (<scp><i>Cenchrus ciliaris</i></scp>). Chirality, 2017, 29, 726-736.	1.3	17
122	Allelopathic Effect of Quercetin, a Flavonoid from Fagopyrum esculentum Roots in the Radicle Growth of Phelipanche ramosa: Quercetin Natural and Semisynthetic Analogues Were Used for a Structure-Activity Relationship Investigation. Plants, 2021, 10, 543.	1.6	17
123	Glycoalkaloids as Biomarkers for Recognition of Cultivated, Wild, and Somatic Hybrids of Potato. Chemistry and Biodiversity, 2009, 6, 437-446.	1.0	16
124	A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycological Progress, 2015, 14, 1.	0.5	16
125	Phytotoxic Activity of Metabolites Isolated from Rutstroemia sp.n., the Causal Agent of Bleach Blonde Syndrome on Cheatgrass (Bromus tectorum). Molecules, 2018, 23, 1734.	1.7	16
126	The main phytotoxic metabolite produced by a strain of <i>Fusarium oxysporum</i> inducing grapevine plant declining in Italy. Natural Product Research, 2018, 32, 2398-2407.	1.0	15

#	Article	IF	CITATIONS
127	Phytotoxic metabolites produced by <i>Diaporthe eres</i> involved in cane blight of grapevine in Italy. Natural Product Research, 2021, 35, 2872-2880.	1.0	15
128	Higginsianins A and B, two fungal diterpenoid α-pyrones with cytotoxic activity against human cancer cells. Toxicology in Vitro, 2019, 61, 104614.	1.1	15
129	Advances in the Chemical and Biological Characterization of Amaryllidaceae Alkaloids and Natural Analogues Isolated in the Last Decade. Molecules, 2020, 25, 5621.	1.7	15
130	The incorporation and release of ungeremine, an antifungal Amaryllidaceae alkaloid, in poly(lactic) Tj ETQq0 0 0 r	gBT /Over 1.3	lock 10 Tf 50 15
131	Ecotoxicological characterisation of a mycoherbicide mixture isolated from the fungus <i>Ascochyta caulina</i> . Pest Management Science, 2013, 69, 850-856.	1.7	14
132	Inuloxins A-D and derivatives as antileishmanial agents: structure-activity relationship study. Journal of Antibiotics, 2014, 67, 597-601.	1.0	14
133	Alternethanoxins C–E, Further Polycyclic Ethanones Produced by <i>Alternaria sonchi</i> , a Potential Mycoherbicide for <i>Sonchus arvensis</i> Biocontrol. Journal of Agricultural and Food Chemistry, 2015, 63, 1196-1199.	2.4	14
134	Fusaproliferin, Terpestacin and Their Derivatives Display Variable Allelopathic Activity Against Some Ascomycetous Fungi. Chemistry and Biodiversity, 2016, 13, 1593-1600.	1.0	14
135	Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyra n -2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletotrichum higginsianum. Tetrahedron, 2017, 73, 6644-6650.	1.0	14
136	Lathyroxins A and B, Phytotoxic Monosubstituted Phenols Isolated from <i>Ascochyta lentis</i> var. <i>lathyri</i> , a Fungal Pathogen of Grass Pea (<i>Lathyrus sativus</i>). Journal of Natural Products, 2018, 81, 1093-1097.	1.5	14

137	<i>î±</i> -Costic acid, a plant sesquiterpene with acaricidal activity against <i>Varroa destructor</i> parasitizing the honey bee. Natural Product Research, 2021, 35, 1428-1435.	1.0	14
138	Pseudomonas fluorescens Showing Antifungal Activity against Macrophomina phaseolina, a Severe Pathogenic Fungus of Soybean, Produces Phenazine as the Main Active Metabolite. Biomolecules, 2021, 11, 1728.	1.8	14
139	Bioactive and Structural Metabolites of <i>Pseudomonas</i> and <i>Burkholderia</i> Species Causal Agents of Cultivated Mushrooms Diseases. Perspectives in Medicinal Chemistry, 2008, 2, 1177391X0800200.	4.6	13
140	Polyphenols as fungal phytotoxins, seed germination stimulants and phytoalexins. Phytochemistry Reviews, 2013, 12, 653-672.	3.1	13
141	Phytotoxic Terpenes Produced by Phytopathogenic Fungi and Allelopathic Plants. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	13
142	Computational ECD Spectrum Simulation of the Phytotoxin Scytalone: Importance of Solvent Effects on Conformer Populations. Chirality, 2014, 26, 502-508.	1.3	13

143	An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides: A tool for rapid immunochemical detection of kiwifruit bacterial canker. Phytochemistry Letters, 2017, 19, 136-140.	0.6	13
144	Fraxitoxin, a New Isochromanone Isolated from <i>Diplodia fraxini</i> . Chemistry and Biodiversity, 2017, 14, e1700325.	1.0	13

#	Article	IF	CITATIONS
145	On the metabolites produced by <i>Colletotrichum gloeosporioides</i> a fungus proposed for the <i>Ambrosia artemisiifolia</i> biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A. Natural Product Research, 2018, 32, 1537-1547.	1.0	13
146	(+)-epi-Epoformin, a Phytotoxic Fungal Cyclohexenepoxide: Structure Activity Relationships. Molecules, 2018, 23, 1529.	1.7	13
147	Phytotoxic Activity and Structure–Activity Relationships of Radicinin Derivatives against the Invasive Weed Buffelgrass (Cenchrus ciliaris). Molecules, 2019, 24, 2793.	1.7	13
148	Phomentrioloxin, a Fungal Phytotoxin with Potential Herbicidal Activity, and its Derivatives: A Structure–Activity Relationship Study. Journal of Agricultural and Food Chemistry, 2013, 61, 131001083331004.	2.4	12
149	First isolation of acetovanillone and piceol from Crinum buphanoides and Crinum graminicola (I.) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.2	「/Qverlock」
150	Alkaloids isolated from indigenous South African Amaryllidaceae: Crinum buphanoides (Welw. ex) Tj ETQq0 0 0 rg South African Journal of Botany, 2018, 118, 188-191.	gBT /Overlo 1.2	ock 10 Tf 50 12
151	A comprehensive study on narcissus tazetta subsp. tazetta L.: Chemo-profiling, isolation, anticholinesterase activity and molecular docking of amaryllidaceae alkaloids. South African Journal of Botany, 2020, 130, 148-154.	1.2	12
152	Phomachalasins A–D, 26-oxa[16] and [15]cytochalasans produced by Phoma exigua var. exigua, a potential mycoherbicide for Cirsium arvense biocontrol. Tetrahedron, 2011, 67, 1557-1563.	1.0	11
153	Bioactive metabolites from new or rare fimicolous fungi with antifungal activity against plant pathogenic fungi. European Journal of Plant Pathology, 2015, 142, 61-71.	0.8	11
154	The colonization processes ofMyrtus communisby strains ofPseudomonas savastanoiwith a differential ability to produce phytohormones. Plant Pathology, 2019, 68, 1109-1119.	1.2	11
155	Isolation of 2,5-diketopiperazines from <i>Lysobacter capsici</i> AZ78 with activity against <i>Rhodococcus fascians</i> . Natural Product Research, 2021, 35, 4969-4977.	1.0	11
156	Relation betweenIn Vitro production of ascosonchine and virulence of strains of the potential mycoherbicideAscochyta sonchi: a method for its quantification in complex samples. Phytochemical Analysis, 2006, 17, 357-364.	1.2	10
157	Chenopodolans E and F, two new furopyrans produced by Phoma chenopodiicola and absolute configuration determination of chenopodolan B. Tetrahedron, 2016, 72, 8502-8507.	1.0	10
158	Biological evaluation and determination of the absolute configuration of chloromonilicin, a strong antimicrobial metabolite isolated from Alternaria sonchi. Journal of Antibiotics, 2016, 69, 9-14.	1.0	10
159	Phytotoxic activity against <i>Bromus tectorum</i> for secondary metabolites of a seed-pathogenic <i>Fusarium</i> strain belonging to the <i>F. tricinctum</i> species complex. Natural Product Research, 2017, 31, 2768-2777.	1.0	10
160	Diploquinones A and B, Two New Phytotoxic Tetrasubstituted 1,4-Naphthoquinones from <i>Diplodia mutila</i> , a Causal Agent of Grapevine Trunk Disease. Journal of Agricultural and Food Chemistry, 2018, 66, 11968-11973.	2.4	10
161	Secondary metabolites produced by <i>Sardiniella urbana</i> , a new emerging pathogen on European hackberry. Natural Product Research, 2019, 33, 1862-1869.	1.0	10
162	Effect of cultural conditions on the production of radicinin, a specific fungal phytotoxin for buffelgrass (Cenchrus ciliaris) biocontrol, by different Cochlioboulus australiensis strains. Natural Product Research, 2021, 35, 99-107.	1.0	10

#	Article	IF	CITATIONS
163	Farnesane-Type Sesquiterpenoids with Antibiotic Activity from Chiliadenus lopadusanus. Antibiotics, 2021, 10, 148.	1.5	10
164	X-Ray Crystal Structure of Phyllostin, a Metabolite Produced by Phyllosticta cirsii, a Potential Mycoherbicide of Cirsium arvense. Journal of Chemical Crystallography, 2010, 40, 15-18.	0.5	9
165	Bioactivity studies of oxysporone and several derivatives. Phytochemistry Letters, 2014, 10, 40-45.	0.6	9
166	Impact of fungal and plant metabolites application on early development stages of pea powdery mildew. Pest Management Science, 2019, 75, 2464-2473.	1.7	9
167	Massarilactones D and H, phytotoxins produced by <i>Kalmusia variispora</i> , associated with grapevine trunk diseases (GTDs) in Iran. Natural Product Research, 2021, 35, 5192-5198.	1.0	9
168	Production of Phytotoxic Metabolites by Botryosphaeriaceae in Naturally Infected and Artificially Inoculated Grapevines. Plants, 2021, 10, 802.	1.6	9
169	Phytotoxins produced by <i>Didymella glomerata</i> and <i>Truncatella angustata</i> , associated with grapevine trunk diseases (GTDs) in Iran. Natural Product Research, 2022, 36, 4316-4323.	1.0	9
170	Bacterial Lipodepsipeptides and Some of Their Derivatives and Cyclic Dipeptides as Potential Agents for Biocontrol of Pathogenic Bacteria and Fungi of Agrarian Plants. Journal of Agricultural and Food Chemistry, 2022, , .	2.4	9
171	Fusarium verticillioides as a new pathogen of the parasitic weed Orobanche spp Phytoparasitica, 2009, 37, 361-370.	0.6	8
172	Papyracillic acid and its derivatives as biting deterrents against Aedes aegypti (Diptera: Culicidae): structure–activity relationships. Medicinal Chemistry Research, 2015, 24, 3981-3989.	1.1	8
173	Sesquiterpene Lactones from Cotula cinerea with Antibiotic Activity against Clinical Isolates of Enterococcus faecalis. Antibiotics, 2021, 10, 819.	1.5	8
174	Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal Metabolites. Natural Product Communications, 2016, 11, 1343-1347.	0.2	8
175	(4Z)-Lachnophyllum Lactone, an Acetylenic Furanone from Conyza bonariensis, Identified for the First Time with Allelopathic Activity against Cuscuta campestris. Agriculture (Switzerland), 2022, 12, 790.	1.4	8
176	Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	7
177	Crystal structure and absolute configuration of sphaeropsidin A and its 6-O-p-bromobenzoate. Tetrahedron Letters, 2016, 57, 4592-4594.	0.7	7
178	Bioefficacy of compounds from Dittrichia viscosa (Asteraceae) as protectant of chickpea seeds against the cowpea seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae). Journal of Plant Diseases and Protection, 2019, 126, 437-446.	1.6	7
179	The fungal sesquiterpenoid pyrenophoric acid B uses the plant ABA biosynthetic pathway to inhibit seed germination. Journal of Experimental Botany, 2019, 70, 5487-5494.	2.4	7
180	Laboratory Evaluation of Natural and Synthetic Aromatic Compounds as Potential Attractants for Male Mediterranean fruit Fly, Ceratitis capitata. Molecules, 2019, 24, 2409.	1.7	7

#	Article	IF	CITATIONS
181	Inuloxin E, a New Seco-Eudesmanolide Isolated from Dittrichia viscosa, Stimulating Orobanche cumana Seed Germination. Molecules, 2019, 24, 3479.	1.7	7
182	Effects of Benzoquinones on Radicles of Orobanche and Phelipanche Species. Plants, 2021, 10, 746.	1.6	7
183	Assessment of weed root extracts for allelopathic activity against Orobanche and Phelipanche species. Phytopathologia Mediterranea, 2021, 60, 455-466.	0.6	7
184	Large-Scale Production and Purification of Ascochyta caulina Phytotoxins and a New HPLC Method for their Analysis. Chromatographia, 2011, 74, 633-638.	0.7	6
185	Influence of light on the biosynthesis of ophiobolin A by <i>Bipolaris maydis</i> . Natural Product Research, 2017, 31, 909-917.	1.0	6
186	Synthesis and mode of action studies of N -[(-)-jasmonyl]- S -tyrosin and ester seiridin jasmonate. Phytochemistry, 2018, 147, 132-139.	1.4	6
187	Allelopathy for Parasitic Plant Management. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	6
188	Prediction and evaluation of allelopathic plants species in Algerian Saharan ecosystem. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 53, 125647.	1.1	6
189	Fungal Phytotoxins with Potential Herbicidal Activity to Control Chenopodium album. Natural Product Communications, 2015, 10, 1119-26.	0.2	6
190	Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal Metabolites. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	5
191	Development of a rapid and sensitive HPLC method for the identification and quantification of cavoxin and cavoxone in Phoma cava culture filtrates. Natural Product Research, 2018, 32, 1611-1615.	1.0	5
192	Phenazine-1-Carboxylic Acid (PCA), Produced for the First Time as an Antifungal Metabolite by <i>Truncatella angustata</i> , a Causal Agent of Grapevine Trunk Diseases (GTDs) in Iran. Journal of Agricultural and Food Chemistry, 2021, 69, 12143-12147.	2.4	5
193	In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides. Toxins, 2021, 13, 805.	1.5	5
194	Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	4
195	Higginsianins D and E, Cytotoxic Diterpenoids Produced by <i>Colletotrichum higginsianum</i> . Journal of Natural Products, 2020, 83, 1131-1138.	1.5	4
196	Polysaccharide Based Polymers Produced by Scabby Cankered Cactus Pear (Opuntia ficus-indica L.) Infected by Neofusicoccum batangarum: Composition, Structure, and Chemico-Physical Properties. Biomolecules, 2022, 12, 89.	1.8	4
197	Specialized Metabolites from the Allelopathic Plant Retama raetam as Potential Biopesticides. Toxins, 2022, 14, 311.	1.5	4
198	Glycoalkaloid Profile in Potato Haploids Derived from <i>Solanum tuberosum</i> – <i>S. bulbocastanum</i> Somatic Hybrids. Chemistry and Biodiversity, 2010, 7, 1885-1892.	1.0	3

#	Article	IF	CITATIONS
199	Structure and Absolute Configuration of Kongiidiazadione, a New Phytotoxic 3â€Substitutedâ€5â€Diazenylcyclopentendione Produced by <i>Diaporthe Kongii</i> . Chirality, 2015, 27, 557-562.	1.3	3
200	Natural and Synthetic Furanones with Anticancer Activity. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	3
201	Saponaroxins A–C, a new 19-oxa-tricyclohenicosatetraenone and, a new dioxacyclopropacycloundecene-10-carboaldehyde and its 6,7-dihydro derivative, produced by Alternaria saponariae, a pathogen of a medicinal plant Saponaria officinalis. Tetrahedron Letters, 2016, 57. 1702-1705.	0.7	3
202	Studies on the O-specific polysaccharide of the lipopolysaccharide from the Pseudomonas mediterranea strain C5P1rad1, a bacterium pathogenic of tomato and chrysanthemum. Carbohydrate Research, 2017, 448, 48-51.	1.1	3
203	A Brief Up-to-Date Overview of Amaryllidaceae Alkaloids: Phytochemical Studies of <i>Narcissus tazetta</i> subsp. <i>tazetta</i> L., Collected in Turkey. Natural Product Communications, 2019, 14, 1934578X1987290.	0.2	3
204	Phytotoxins Produced by Two Biscogniauxia rosacearum Strains, Causal Agents of Grapevine Trunk Diseases, and Charcoal Canker of Oak Trees in Iran. Toxins, 2021, 13, 812.	1.5	3
205	Untargeted and Targeted LC-MS/MS Based Metabolomics Study on In Vitro Culture of Phaeoacremonium Species. Journal of Fungi (Basel, Switzerland), 2022, 8, 55.	1.5	3
206	Phytotoxic Fungal Exopolysaccharides Produced by Fungi Involved in Grapevine Trunk Diseases. Natural Product Communications, 2016, 11, 1481-1484.	0.2	3
207	Phenazine as an Anticancer Agent. , 2013, , 217-243.		2
208	Absolute configuration of secoâ€eudesmanolide inuloxin D from experimental and predicted chiroptical studies of its 4―O â€acetyl derivative. Chirality, 2021, 33, 233-241.	1.3	2
209	Complex Mixture of Arvensic Acids Isolated from Convolvulus arvensis Roots Identified as Inhibitors of Radicle Growth of Broomrape Weeds. Agriculture (Switzerland), 2022, 12, 585.	1.4	2
210	An Ecotoxicological Evaluation of Four Fungal Metabolites with Potential Application as Biocides for the Conservation of Cultural Heritage. Toxins, 2022, 14, 407.	1.5	2
211	The Assignment of the Absolute Configuration of Non-Cyclic Sesquiterpenes by Vibrational and Electronic Circular Dichroism: The Example of Chiliadenus lopadusanus Metabolites. Biomolecules, 2021, 11, 1902.	1.8	1
212	Microbial and Plant Metabolites as Potential Herbicides for the Control of Parasitic Plants. ACS Symposium Series, 2013, , 153-166.	0.5	0
213	Cover Image, Volume 29, Issue 9. Chirality, 2017, 29, i.	1.3	0
214	Isolation of tyrosol the main phytotoxic metabolite produced by the edible fungus Agaricus litoralis. Egyptian Journal of Chemistry, 2021, .	0.1	0