Alina Sionkowska

List of Publications by Citations

Source: https://exaly.com/author-pdf/3138162/alina-sionkowska-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

149 papers

5,142 citations

40 h-index 65 g-index

156 ext. papers

6,025 ext. citations

avg, IF

6.53 L-index

#	Paper	IF	Citations
149	Current research on the blends of natural and synthetic polymers as new biomaterials: Review. <i>Progress in Polymer Science</i> , 2011 , 36, 1254-1276	29.6	632
148	Molecular interactions in collagen and chitosan blends. <i>Biomaterials</i> , 2004 , 25, 795-801	15.6	365
147	Camphorquinonelmines photoinitating systems for the initiation of free radical polymerization. <i>Polymer</i> , 2003 , 44, 5219-5226	3.9	221
146	Properties and modification of porous 3-D collagen/hydroxyapatite composites. <i>International Journal of Biological Macromolecules</i> , 2013 , 52, 250-9	7.9	107
145	Effect of UV radiation on the infrared spectra of collagen. <i>Polymer Degradation and Stability</i> , 1996 , 51, 19-26	4.7	107
144	Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. Journal of Molecular Liquids, 2013 , 178, 5-14	6	96
143	Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. <i>Thermochimica Acta</i> , 2004 , 418, 123-130	2.9	85
142	Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. <i>International Journal of Biological Macromolecules</i> , 2010 , 47, 483-7	7.9	79
141	Identification of an intermediate state in the helix-coil degradation of collagen by ultraviolet light. <i>Journal of Biological Chemistry</i> , 2000 , 275, 33014-20	5.4	77
140	The influence of UV radiation on silk fibroin. <i>Polymer Degradation and Stability</i> , 2011 , 96, 523-528	4.7	73
139	Chemical and thermal cross-linking of collagen and elastin hydrolysates. <i>International Journal of Biological Macromolecules</i> , 2010 , 47, 570-7	7.9	72
138	Modification of collagen and chitosan mixtures by the addition of tannic acid. <i>Journal of Molecular Liquids</i> , 2014 , 199, 318-323	6	71
137	Interaction of collagen and poly(vinyl pyrrolidone) in blends. <i>European Polymer Journal</i> , 2003 , 39, 2135-	-2 <u>4.4</u> 0	69
136	Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 465-470	2.6	69
135	Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. <i>Polymer Degradation and Stability</i> , 2006 , 91, 3026-3032	4.7	68
134	Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. <i>International Journal of Biological Macromolecules</i> , 1999 , 24, 337-40	7.9	68
133	The review of versatile application of collagen. <i>Polymers for Advanced Technologies</i> , 2017 , 28, 4-9	3.2	67

(1996-2016)

132	3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid. <i>International Journal of Biological Macromolecules</i> , 2016 , 89, 442-8	7.9	66	
131	Characterization of chitosan composites with various clays. <i>International Journal of Biological Macromolecules</i> , 2014 , 65, 534-41	7.9	65	
130	The influence of UV irradiation on the surface of chitosan films. Surface Science, 2006, 600, 3775-3779	1.8	64	
129	Modification of collagen films by ultraviolet irradiation. <i>Polymer Degradation and Stability</i> , 2000 , 68, 14	7 ₄ 1.51	64	
128	Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. <i>International Journal of Biological Macromolecules</i> , 2015 , 74, 397-403	7.9	63	
127	Preparation of ready-to-use, stockable and reconstituted collagen. <i>Macromolecular Bioscience</i> , 2005 , 5, 821-8	5.5	62	
126	Northern pike (Esox lucius) collagen: Extraction, characterization and potential application. <i>International Journal of Biological Macromolecules</i> , 2015 , 81, 220-7	7.9	60	
125	Biopolymers for hydrogels in cosmetics: review. <i>Journal of Materials Science: Materials in Medicine</i> , 2020 , 31, 50	4.5	56	
124	Surface characterization of collagen/elastin based biomaterials for tissue regeneration. <i>Applied Surface Science</i> , 2009 , 255, 8286-8292	6.7	56	
123	New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS. <i>International Journal of Biological Macromolecules</i> , 2018 , 107, 247-253	7.9	54	
122	UV-vis and FT-IR spectra of ultraviolet irradiated collagen in the presence of antioxidant ascorbic acid. <i>Ecotoxicology and Environmental Safety</i> , 2010 , 73, 448-55	7	52	
121	Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 188, 192-199	4.7	52	
120	Photochemical stability of collagen/poly (vinyl alcohol) blends. <i>Polymer Degradation and Stability</i> , 2004 , 83, 117-125	4.7	51	
119	The influence of UV irradiation on surface composition of collagen/PVP blended films. <i>Applied Surface Science</i> , 2006 , 253, 1970-1977	6.7	47	
118	Effects of solar radiation on collagen and chitosan films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2006 , 82, 9-15	6.7	47	
117	Stimuli responsive gels based on interpenetrating network of chitosan and poly(vinylpyrrolidone). <i>Polymer</i> , 2005 , 46, 1595-1600	3.9	47	
116	Current methods of collagen cross-linking: Review. <i>International Journal of Biological Macromolecules</i> , 2020 , 161, 550-560	7.9	46	
115	The effect of UV radiation on the thermal parameters of collagen degradation. <i>Polymer Degradation and Stability</i> , 1996 , 51, 15-18	4.7	45	

114	The photochemical stability of collagenthitosan blends. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 162, 545-554	4.7	42
113	Mechanical properties of UV irradiated rat tail tendon (RTT) collagen. <i>International Journal of Biological Macromolecules</i> , 2004 , 34, 9-12	7.9	42
112	The miscibility of collagen/hyaluronic acid/chitosan blends investigated in dilute solutions and solids. <i>Journal of Molecular Liquids</i> , 2016 , 220, 726-730	6	42
111	Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. <i>International Journal of Biological Macromolecules</i> , 2017 , 102, 658-666	7.9	41
110	Thermal denaturation of UV-irradiated wet rat tail tendon collagen. <i>International Journal of Biological Macromolecules</i> , 2005 , 35, 145-9	7.9	41
109	Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. <i>Materials Science and Engineering C</i> , 2018 , 86, 103-108	8.3	39
108	Surface properties of thin films based on the mixtures of chitosan and silk fibroin. <i>Journal of Molecular Liquids</i> , 2013 , 186, 157-162	6	39
107	Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. <i>Carbohydrate Polymers</i> , 2020 , 235, 115976	10.3	38
106	Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan. <i>International Journal of Biological Macromolecules</i> , 2016 , 92, 371-376	7.9	38
105	Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics. <i>Pure and Applied Chemistry</i> , 2017 , 89, 1829-1839	2.1	37
104	Antimicrobial activity of collagen material with thymol addition for potential application as wound dressing. <i>Polymer Testing</i> , 2017 , 63, 360-366	4.5	36
103	The influence of UV-irradiation on chitosan modified by the tannic acid addition. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 148, 333-339	6.7	36
102	Carrageenan-based hydrogels: Effect of sorbitol and glycerin on the stability, swelling and mechanical properties. <i>Polymer Testing</i> , 2018 , 67, 7-11	4.5	33
101	The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 140, 301-5	6.7	33
100	Collagen/elastin hydrogels cross-linked by squaric acid. <i>Materials Science and Engineering C</i> , 2016 , 60, 100-108	8.3	32
99	The comparison of physic-chemical properties of chitosan/collagen/hyaluronic acid composites with nano-hydroxyapatite cross-linked by dialdehyde starch and tannic acid. <i>Polymer Testing</i> , 2017 , 62, 171-176	4.5	31
98	Isolation and characterization of collagen from the skin of Brama australis. <i>International Journal of Biological Macromolecules</i> , 2015 , 80, 605-9	7.9	30
97	Changes induced by ultraviolet light in fluorescence of collagen in the presence of Etarotene. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 120, 207-210	4.7	30

(2017-2016)

96	Gentamicin release from chitosan and collagen composites. <i>Journal of Drug Delivery Science and Technology</i> , 2016 , 35, 353-359	4.5	28	
95	In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. <i>International Journal of Biological Macromolecules</i> , 2018 , 118, 938-944	7.9	28	
94	CollagenBynthetic polymer interactions in solution and in thin films. <i>Journal of Molecular Liquids</i> , 2009 , 145, 135-138	6	28	
93	Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. <i>Polymers</i> , 2020 , 12,	4.5	26	
92	Photochemical stability of collagen/poly(ethylene oxide) blends. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 177, 61-67	4.7	26	
91	Biofilm formation on the surface of polylactide during its biodegradation in different environments. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 136, 340-5	6	25	
90	Collagen-DNA complex. <i>Biomacromolecules</i> , 2008 , 9, 21-8	6.9	25	
89	Collagen Based Materials in Cosmetic Applications: A Review. <i>Materials</i> , 2020 , 13,	3.5	24	
88	Scaffolds based on chitosan and collagen with glycosaminoglycans cross-linked by tannic acid. <i>Polymer Testing</i> , 2018 , 65, 163-168	4.5	24	
87	The application of chitosan/collagen/hyaluronic acid sponge cross-linked by dialdehyde starch addition as a matrix for calcium phosphate in situ precipitation. <i>International Journal of Biological Macromolecules</i> , 2018 , 107, 470-477	7.9	23	
86	Chitosan blends containing hyaluronic acid and collagen. Compatibility behaviour. <i>Journal of Molecular Liquids</i> , 2015 , 212, 879-884	6	23	
85	Dialysis as a method of obtaining neutral collagen gels. <i>Materials Science and Engineering C</i> , 2014 , 40, 65-70	8.3	22	
84	Photochemical transformations in collagen in the presence of Etarotene. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1996 , 96, 123-127	4.7	22	
83	The film-forming properties of chitosan with tannic acid addition. <i>Materials Letters</i> , 2019 , 245, 22-24	3.3	21	
82	Characterization of silk fibroin 3D composites modified by collagen. <i>Journal of Molecular Liquids</i> , 2016 , 215, 323-327	6	21	
81	Collagen/Gelatin/Hydroxyethyl Cellulose Composites Containing Microspheres Based on Collagen and Gelatin: Design and Evaluation. <i>Polymers</i> , 2018 , 10,	4.5	21	
80	The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings. <i>Polymer Testing</i> , 2019 , 78, 106007	4.5	21	
79	Preparation and characterization of 3D collagen materials with magnetic properties. <i>Polymer Testing</i> , 2017 , 62, 382-391	4.5	21	

78	Miscibility and physical properties of chitosan and silk fibroin mixtures. <i>Journal of Molecular Liquids</i> , 2014 , 198, 354-357	6	20
77	Model properties relevant to laser ablation of moderately absorbing polymers. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 101, 215-224	2.6	20
76	Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. <i>Molecules</i> , 2020 , 25,	4.8	20
75	Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?. <i>Journal of Materials Science: Materials in Medicine</i> , 2016 , 27, 67	4.5	20
74	Flash photolysis and pulse radiolysis studies on collagen Type I in acetic acid solution. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2006 , 84, 38-45	6.7	19
73	Photochemical transformations in collagen in the presence of melanin. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1999 , 124, 91-94	4.7	19
72	Preparation and characterization of collagen/hyaluronic acid/chitosan film crosslinked with dialdehyde starch. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 290-295	7.9	18
71	Bacterial nanocelullose in biomedical applications: a review. <i>Polymer International</i> , 2019 , 68, 1841-1847	3.3	18
70	Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 94, 719-729	2.6	18
69	Spectroscopic studies into the influence of UV radiation on elastin hydrolysates in water solution. Journal of Photochemistry and Photobiology B: Biology, 2006 , 85, 79-84	6.7	18
68	Thermal stability of UV-irradiated collagen in bovine lens capsules and in bovine cornea. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2005 , 80, 87-92	6.7	17
67	Silk Fibroin/Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials toward Bone Tissue Regeneration. <i>Materials</i> , 2020 , 13,	3.5	16
66	Chitosan/collagen blends with inorganic and organic additive-A review. <i>Advances in Polymer Technology</i> , 2018 , 37, 2367-2376	1.9	16
65	Influence of glycosaminoglycans on the properties of thin films based on chitosan/collagen blends. Journal of the Mechanical Behavior of Biomedical Materials, 2018 , 80, 189-193	4.1	15
64	Bombyx mori silk protein films microprocessing with a nanosecond ultraviolet laser and a femtosecond laser workstation: theory and experiments. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 67-77	2.6	15
63	Collagen-based scaffolds enriched with glycosaminoglycans isolated from skin of Salmo salar fish. <i>Polymer Testing</i> , 2017 , 62, 132-136	4.5	15
62	Surface properties of UV-irradiated poly(vinyl alcohol) films containing small amount of collagen. <i>Applied Surface Science</i> , 2009 , 255, 4135-4139	6.7	15
61	Collagen fibrils in UV irradiated poly(vinyl pyrrolidone) films. <i>Applied Surface Science</i> , 2008 , 255, 2030-20	08 <i>9</i> 7	15

60	Photochemical behaviour of hydrolysed keratin. International Journal of Cosmetic Science, 2011, 33, 503	3-8 .7	14	
59	Biopolymeric nanocomposites for potential biomedical applications. <i>Polymer International</i> , 2016 , 65, 1123-1131	3.3	14	
58	Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State. <i>Molecules</i> , 2017 , 22,	4.8	13	
57	Effect of Crosslinking Type on the Physical-Chemical Properties and Biocompatibility of Chitosan-Based Electrospun Membranes. <i>Polymers</i> , 2021 , 13,	4.5	13	
56	Characterization of gelatin and chitosan scaffolds cross-linked by addition of dialdehyde starch. <i>Biomedical Materials (Bristol)</i> , 2017 , 13, 015016	3.5	13	
55	The cells viability study on the composites of chitosan and collagen with glycosaminoglycans isolated from fish skin. <i>Materials Letters</i> , 2017 , 206, 166-168	3.3	12	
54	Fish Scales as a Biocomposite of Collagen and Calcium Salts. Key Engineering Materials, 2013, 587, 185-1	1904	12	
53	Physico-chemical properties of three-component mixtures based on chitosan, hyaluronic acid and collagen. <i>Molecular Crystals and Liquid Crystals</i> , 2016 , 640, 21-29	0.5	12	
52	Modification of 3D materials based on chitosan and collagen blends by sodium alginate. <i>Molecular Crystals and Liquid Crystals</i> , 2016 , 640, 39-45	0.5	12	
51	Effects of solar radiation on collagen-based biomaterials. <i>International Journal of Photoenergy</i> , 2006 , 2006, 1-6	2.1	11	
50	Preparation and characterization of silk fibroin/collagen sponge modified by chemical cross-linking. <i>Molecular Crystals and Liquid Crystals</i> , 2016 , 640, 180-190	0.5	11	
49	Biomaterials with Potential Use in Bone Tissue Regeneration-Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS. <i>Materials</i> , 2021 , 14,	3.5	11	
48	Physicochemical properties of scaffolds based on mixtures of chitosan, collagen and glycosaminoglycans with nano-hydroxyapatite addition. <i>International Journal of Biological Macromolecules</i> , 2018 , 118, 1880-1883	7.9	10	
47	Biological Properties of Chitosan/Collagen Composites. <i>Key Engineering Materials</i> , 2013 , 587, 205-210	0.4	10	
46	Spectroscopic studies into the influence of UV radiation on elastin in the presence of collagen. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2007 , 86, 186-91	6.7	10	
45	Drug Release from Porous Matrixes based on Natural Polymers. <i>Current Pharmaceutical Biotechnology</i> , 2017 , 18, 721-729	2.6	10	
44	Preparation and characterization of collagen/chitosan composites with silver nanoparticles. <i>Polymer Composites</i> , 2020 , 41, 951-957	3	10	
43	Preparation and characterization of silk fibroin/collagen sponge with nanohydroxyapatite. Molecular Crystals and Liquid Crystals, 2016, 640, 106-112	0.5	10	

42	In vivo studies of novel scaffolds with tannic acid addition. <i>Polymer Degradation and Stability</i> , 2018 , 158, 26-30	4.7	10
41	Collagen blended with natural polymers: Recent advances and trends. <i>Progress in Polymer Science</i> , 2021 , 122, 101452	29.6	10
40	Stabilizing effect of carbodiimide and dehydrothermal treatment crosslinking on the properties of collagen/hydroxyapatite scaffolds. <i>Polymer International</i> , 2017 , 66, 1164-1172	3.3	9
39	Incorporation of magnetite particles in 3D matrices made from the blends of collagen, chitosan, and hyaluronic acid. <i>Advances in Polymer Technology</i> , 2018 , 37, 2905-2914	1.9	9
38	The potential of polymers from natural sources as components of the blends for biomedical and cosmetic applications. <i>Pure and Applied Chemistry</i> , 2015 , 87, 1075-1084	2.1	9
37	The preparation and characterization of composite materials by incorporating microspheres into a collagen/hydroxyethyl cellulose matrix. <i>Polymer Testing</i> , 2018 , 69, 350-358	4.5	9
36	Polymer films based on silk fibroin and collagen - the physico-chemical properties. <i>Molecular Crystals and Liquid Crystals</i> , 2016 , 640, 13-20	0.5	8
35	Biocomposites for Orthopedic and Dental Application. <i>Key Engineering Materials</i> , 2016 , 672, 261-275	0.4	8
34	Preparation and characterization of collagen/chitosan poly (ethylene glycol)/nanohydroxyapatite composite scaffolds. <i>Polymers for Advanced Technologies</i> , 2019 , 30, 799-803	3.2	8
33	How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications?-Blending and Cross-Linking of Silk Fibroin-A Review. <i>Materials</i> , 2021 , 14,	3.5	8
32	The physicochemical properties of 3D materials based on hyaluronic acid modified by tannic acid addition. <i>Molecular Crystals and Liquid Crystals</i> , 2018 , 670, 90-96	0.5	8
31	Surface and antibacterial properties of thin films based on collagen and thymol. <i>Materials Today Communications</i> , 2020 , 22, 100949	2.5	7
30	Preliminary in vitro and in vivo assessment of modified collagen/hydroxyapatite composite. <i>Materials Letters</i> , 2018 , 221, 74-76	3.3	7
29	Biopolymer Blends as Potential Biomaterials and Cosmetic Materials. <i>Key Engineering Materials</i> , 2013 , 583, 95-100	0.4	7
28	Collagen Based Materials for Biomedical Applications: Preparation and Properties. <i>Materials Science Forum</i> , 2012 , 706-709, 595-599	0.4	7
27	PEG-dialdehyde t he new cross-linking agent for collagen/elastin hydrogels. <i>Polymers for Advanced Technologies</i> , 2017 , 28, 763-767	3.2	6
26	The Influence of UV Light on Rheological Properties of Collagen Extracted from Silver Carp Skin. <i>Materials</i> , 2020 , 13,	3.5	6
25	Properties and Characterization of Chitosan/Collagen/PMMA Composites Containing Hydroxyapatite. <i>Key Engineering Materials</i> , 2016 , 672, 247-256	0.4	6

(2021-2020)

24	Modification of Collagen Properties with Ferulic Acid. <i>Materials</i> , 2020 , 13,	3.5	6
23	Natural Polymers as Components of Blends for Biomedical Applications 2013 , 309-342		5
22	Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydroxyapatite. <i>International Journal of Polymer Analysis and Characterization</i> , 2020 , 25, 315-333	1.7	5
21	Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review. <i>Materials</i> , 2021 , 14,	3.5	5
20	Structure and Interactions in Chitosan Composites. Key Engineering Materials, 2016, 672, 257-260	0.4	4
19	The Processes Induced by UV Light in Biopolymers and Biopolymer Composites. <i>Molecular Crystals and Liquid Crystals</i> , 2014 , 590, 17-23	0.5	4
18	CHARACTERISATION OF CHITOSAN/HYALURONIC ACID BLEND FILMS MODIFIED BY COLLAGEN. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017 , XXII, 125-134	0.7	4
17	L-ascorbic acid release from polymeric matrixes based on blends of chitosan, collagen and hyaluronic acid. <i>Molecular Crystals and Liquid Crystals</i> , 2016 , 640, 46-53	0.5	4
16	Modification by UV radiation of the surface of thin films based on collagen extracted from fish scales. <i>Biointerphases</i> , 2014 , 9, 029003	1.8	3
15	The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. <i>Molecules</i> , 2021 , 26,	4.8	3
14	The influence of UV-radiation on hyaluronic acid and its blends with addition of collagen and chitosan. <i>International Journal of Polymer Analysis and Characterization</i> , 2019 , 24, 285-294	1.7	2
13	Evaluation of Sebostatic Activity of Juniperus communis Fruit Oil and Pelargonium graveolens Oil Compared to Niacinamide. <i>Cosmetics</i> , 2017 , 4, 36	2.7	2
12	Surface Property Modification of Collagen, Hyaluronic Acid, and Chitosan Films with the Neodymium Laser. <i>Polysaccharides</i> , 2022 , 3, 178-187	3	2
11	THE INFLUENCE OF THE TYPE SOLVENT ON THE STRUCTURE OF CHITOSAN BLENDS WITH HYALURONIC ACID. <i>Progress on Chemistry and Application of Chitin and Its Derivatives</i> , 2016 , 21, 147-15	3 ^{0.7}	2
10	Physicochemical Performance of Collagen Modified by Melissa officinalis Extract. <i>Cosmetics</i> , 2021 , 8, 95	2.7	2
9	Design, characterization and in vitro evaluation of thin films enriched by tannic acid complexed by Fe(III) ions. <i>Progress in Biomaterials</i> , 2020 , 9, 249-257	4.4	2
8	Study of castor oil-based auxetic polyurethane foams for cushioning applications. <i>Polymer International</i> , 2021 , 70, 1631	3.3	2
7	Is Dialdehyde Chitosan a Good Substance to Modify Physicochemical Properties of Biopolymeric Materials?. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2

6	Characterization of scaffolds based on chitosan and collagen with glycosaminoglycans. <i>International Journal of Polymer Analysis and Characterization</i> , 2019 , 24, 374-380	1.7	1
5	Properties of scaffolds based on chitosan and collagen with bioglass 45S5. <i>IET Nanobiotechnology</i> , 2020 , 14, 830-832	2	1
4	Preparation and characterization of biopolymeric films with magnetic properties. <i>Molecular Crystals and Liquid Crystals</i> , 2018 , 670, 80-89	0.5	1
3	Spectroscopic studies of UV-irradiated poly(vinyl alcohol)/elastin blends. <i>International Journal of Polymer Analysis and Characterization</i> , 2021 , 26, 84-96	1.7	Ο
2	Design and Characterization of Porous Collagen/Gelatin/Hydroxyethyl Cellulose Matrices Containing Microspheres Based on Ecarrageenan. <i>Advanced Structured Materials</i> , 2019 , 151-157	0.6	О
1	Papers from the 1st International Conference on Chemistry for Beauty and Health (Beauty-Torun 2018). <i>Pure and Applied Chemistry</i> , 2019 , 91, 1479-1480	2.1	