Dharmendra Chalasani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138005/publications.pdf

Version: 2024-02-01

687220 642610 33 573 13 23 citations g-index h-index papers 36 36 36 544 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Upset Protrusion Joining (UPJ) characteristics of cast AM60 magnesium alloy to join with dissimilar material. International Journal of Advanced Manufacturing Technology, 2022, 120, 329-348.	1.5	O
2	Development of a laboratory-scale Upset Protrusion Joining (UPJ) system for dissimilar materials. International Journal of Advanced Manufacturing Technology, 2021, 113, 2725-2738.	1.5	3
3	Atom probe tomography study of \hat{l}^2 -phases in additively manufactured nickel aluminum bronze in as-built and heat-treated conditions. Materials and Design, 2021, 202, 109541.	3.3	26
4	Metallurgical Assessment of Additive Manufactured Nickel Aluminum Bronze-316L Stainless Steel Bimetallic Structure: Effect of Deposit Geometry on the Interfacial Characteristics and Cracking. Journal of Materials Engineering and Performance, 2021, 30, 8746-8762.	1,2	4
5	Characterization of \hat{l}^e -precipitates in wire-arc additive manufactured nickel aluminum bronze: A combined transmission Kikuchi diffraction and atom probe tomography study. Additive Manufacturing, 2021, 46, 102137.	1.7	6
6	Deformation mechanisms and fracture of electron beam melted Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138652.	2.6	27
7	Wire-arc additive manufacturing of nickel aluminum bronze/stainless steel hybrid parts – Interfacial characterization, prospects, and problems. Materialia, 2020, 13, 100834.	1.3	55
8	Wire-arc additive manufactured nickel aluminum bronze with enhanced mechanical properties using heat treatments cycles. Additive Manufacturing, 2020, 36, 101510.	1.7	15
9	Corrosion Behaviour of Electron Beam Melted Ti6Al4V: Effects of Microstructural Variation. Journal of the Electrochemical Society, 2020, 167, 131505.	1.3	11
10	Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing. Additive Manufacturing, 2019, 30, 100872.	1.7	42
11	Texture Evolution and Anisotropy of Plastic Flow in Hot Compression of Extruded ZK60-T5 Magnesium Alloy Plate. Metals, 2019, 9, 1170.	1.0	O
12	Workability Characteristics and Deformation Mechanisms of Die-Cast AM60 and AZ91 Magnesium Alloys: Correlation with Processing Maps. Journal of Materials Engineering and Performance, 2019, 28, 123-139.	1.2	7
13	Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite. Materials Performance and Characterization, 2019, 8, 766-781.	0.2	O
14	Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D). Journal of Materials Engineering and Performance, 2018, 27, 1440-1449.	1.2	1
15	Role of loading direction on compressive deformation behavior of extruded ZK60 alloy plate in a wide range of temperature. Journal of Alloys and Compounds, 2018, 744, 289-300.	2.8	13
16	Hot Forging Behavior of Mgâ^'8Alâ^'4Baâ^'4Ca (ABaX844) Alloy and Validation of Processing Map. Minerals, Metals and Materials Series, 2018, , 289-296.	0.3	2
17	Effect of Calcium on the Hot Working Behavior of AZ31-1.5 vol.% Nano-Alumina Composite Prepared by Disintegrated Melt Deposition (DMD) Processing. Metals, 2018, 8, 699.	1.0	3
18	Connected Process Design for Hot Working of a Creep-Resistant Mg–4Al–2Ba–2Ca Alloy (ABaX422). Metals, 2018, 8, 463.	1.0	3

#	Article	IF	CITATIONS
19	Review on Hot Working Behavior and Strength of Calciumâ€Containing Magnesium Alloys. Advanced Engineering Materials, 2018, 20, 1701102.	1.6	18
20	Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy. Metals, 2018, 8, 216.	1.0	9
21	High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11) Alloy. Metals, 2017, 7, 405.	1.0	8
22	Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633. Metals, 2017, 7, 513.	1.0	4
23	Comparative study of microstructure and texture of cast and homogenized TX32 magnesium alloy after hot deformation. Metals and Materials International, 2015, 21, 134-146.	1.8	7
24	Processing Map of AZ31-1Ca-1.5 vol.% Nano-Alumina Composite for Hot Working. Materials and Manufacturing Processes, 2015, 30, 1161-1167.	2.7	13
25	Effect of aluminum on microstructural evolution during hot deformation of TX32 magnesium alloy. Journal of Materials Science, 2014, 49, 5885-5898.	1.7	7
26	Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32–0.4Al magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 11-23.	2.6	16
27	Hot workability analysis with processing map and texture characteristics of as-cast TX32 magnesium alloy. Journal of Materials Science, 2013, 48, 5236-5246.	1.7	25
28	High Temperature Deformation and Microstructural Features of TXA321 Magnesium Alloy: Correlations with Processing Map. Advanced Engineering Materials, 2013, 15, 761-766.	1.6	7
29	Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy. Materials Chemistry and Physics, 2012, 136, 1081-1091.	2.0	22
30	Texture evolution during hot deformation processing of Mg-3Sn-2Ca-0.4Al Alloy., 2012,, 295-300.		0
31	Compressive strength and hot deformation behavior of TX32 magnesium alloy with 0.4% Al and 0.4% Si additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6964-6970.	2.6	26
32	Study on laser welding–brazing of zinc coated steel to aluminum alloy with a zinc based filler. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1497-1503.	2.6	192
33	Evaluating the Characteristics of Cast AZ91 Magnesium Alloy for Upset Protrusion Joining Method. Journal of Materials Engineering and Performance, 0, , 1.	1.2	0