Denise S Ruzene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137867/publications.pdf

Version: 2024-02-01

516681 552766 37 713 16 26 h-index citations g-index papers 37 37 37 982 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions. Fuel, 2012, 95, 528-536.	6.4	100
2	Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis) Tj ETQq0 0 629-641.	0 rgBT /Ov 2.9	verlock 10 T 88
3	An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw. Applied Biochemistry and Biotechnology, 2008, 147, 85-96.	2.9	47
4	Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications. Renewable and Sustainable Energy Reviews, 2019, 114, 109305.	16.4	45
5	Evaluation of a hydrothermal process for pretreatment of wheat strawâ€"effect of particle size and process conditions. Journal of Chemical Technology and Biotechnology, 2011, 86, 88-94.	3.2	43
6	Production of xylanase and \hat{l}^2 -xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering, 2012, 35, 1185-1192.	3.4	35
7	Xylanase and \hat{l}^2 -Xylosidase Production by Aspergillus ochraceus: New Perspectives for the Application of Wheat Straw Autohydrolysis Liquor. Applied Biochemistry and Biotechnology, 2012, 166, 336-347.	2.9	30
8	Integrated Processes for Use of Pulps and Lignins Obtained from Sugarcane Bagasse and Straw: A Review of Recent Efforts in Brazil. Applied Biochemistry and Biotechnology, 2005, 123, 0821-0826.	2.9	28
9	Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1979-1984.	3.0	25
10	Integral use of lignocellulosic residues from different sunflower accessions: Analysis of the production potential for biofuels. Journal of Cleaner Production, 2019, 221, 430-438.	9.3	24
11	Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere, 2020, 244, 125432.	8.2	19
12	Evaluation of a new strategy in the elaboration of culture media to produce surfactin from hemicellulosic corncob liquor. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00364.	4.4	18
13	Bromelain Enzyme from Pineapple: In Vitro Activity Study under Different Micropropagation Conditions. Applied Biochemistry and Biotechnology, 2012, 168, 234-246.	2.9	17
14	Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose, 2017, 24, 4355-4365.	4.9	17
15	Sunflower stalk as a carbon source inductive for fungal xylanase production. Industrial Crops and Products, 2020, 153, 112368.	5.2	17
16	Bleachability and Characterization by Fourier Transform Infrared Principal Component Analysis of Acetosolv Pulps Obtained from Sugarcane Bagasse. Applied Biochemistry and Biotechnology, 2001, 91-93, 63-70.	2.9	16
17	Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions. Applied Biochemistry and Biotechnology, 2007, 137-140, 573-582.	2.9	16

Cellulose from Lignocellulosic Waste. , 2015, , 475-511.

#	Article	IF	CITATIONS
19	Cellulosic Films Obtained from the Treatment of Sugarcane Bagasse Fibers with N-methylmorpholine-N-oxide (NMMO). Applied Biochemistry and Biotechnology, 2009, 154, 38-47.	2.9	14
20	Valorization of Pineapple Waste: a Review on How the Fruit's Potential Can Reduce Residue Generation. Bioenergy Research, 2022, 15, 924-934.	3.9	14
21	An overview of applications in pineapple agroindustrial residues. Acta Agriculturae Slovenica, 2018, 111, 445.	0.3	12
22	Production of Biomass-Degrading Enzymes by Trichoderma reesei Using Liquid Hot Water-Pretreated Corncob in Different Conditions of Oxygen Transfer. Bioenergy Research, 2019, 12, 583-592.	3.9	10
23	Influence of Pressure in Ethanol/Water Pulping of Sugarcane Bagasse. Applied Biochemistry and Biotechnology, 2003, 105, 195-204.	2.9	8
24	A Bibliometric Study on the Application of Advanced Oxidation Processes for Produced Water Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	8
25	Effect of Dose of Xylanase on Bleachability of Sugarcane Bagasse Ethanol/Water Pulps. Applied Biochemistry and Biotechnology, 2003, 108, 769-774.	2.9	7
26	A Bibliometric Description of Lignin Applicability for the Removal of Chemical Pollutants in Effluents. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	7
27	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
28	Prospecting of soybean hulls as an inducer carbon source for the cellulase production. Preparative Biochemistry and Biotechnology, 2018, 48, 743-749.	1.9	6
29	Biosurfactants produced from corncob: a bibliometric perspective of a renewable and promising substrate. Preparative Biochemistry and Biotechnology, 2022, 52, 123-134.	1.9	5
30	Carboxymethylcellulose Obtained by Ethanol/Water Organosolv Process Under Acid Conditions. , 2007, , 573-582.		4
31	Ethanol/water pulp enzymatic pretreatment: Chemical and FTIR-PCA analyses. Chemical Papers, 2007, 61, .	2.2	3
32	Alcohol and Health: Standards of Consumption, Benefits and Harm - a Review. Czech Journal of Food Sciences, 2018, 36, 427-440.	1.2	3
33	An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw., 2007,, 453-464.		3
34	Effect of Dose of Xylanase on Bleachability of Sugarcane Bagasse Ethanol/Water Pulps., 2003,, 769-774.		1
35	Utilization of corncob as adsorbent to remove oil and grease from produced water. Petroleum Science and Technology, 2023, 41, 477-492.	1.5	1
36	Integrated Processes for Use of Pulps and Lignins Obtained from Sugarcane Bagasse and Straw. , 2005, , 821-826.		0

#	Article	IF	CITATIONS
37	Metadata analysis of systematic literature reviews on academic spin-offs. International Journal for Innovation Education and Research, 2022, 10, 259-282.	0.1	O