
Reinhard Hehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dialogue-like cell communication mechanism is conserved in filamentous ascomycete fungi and mediates interspecies interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112518119.	7.1	15
2	Unusual DNA-binding properties of the Arabidopsis thaliana WRKY50 transcription factor at target gene promoters. Plant Cell Reports, 2021, 40, 69-83.	5.6	5
3	A strong NF-κB p65 responsive cis-regulatory sequence from Arabidopsis thaliana interacts with WRKY40. Plant Cell Reports, 2019, 38, 1139-1150.	5.6	6
4	Transcription factors involved in basal immunity in mammals and plants interact with the same MAMP-responsive cis-sequence from Arabidopsis thaliana. Plant Molecular Biology, 2018, 98, 565-578.	3.9	7
5	Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters. Plant Cell Reports, 2017, 36, 971-986.	5.6	16
6	From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research. Plant Science, 2017, 262, 141-147.	3.6	6
7	A cis-regulatory sequence from a short intergenic region gives rise to a strong microbe-associated molecular pattern-responsive synthetic promoter. Molecular Genetics and Genomics, 2016, 291, 1155-1165.	2.1	1
8	Analysis of Microbe-Associated Molecular Pattern-Responsive Synthetic Promoters with the Parsley Protoplast System. Methods in Molecular Biology, 2016, 1482, 163-174.	0.9	17
9	Plant Synthetic Promoters. Methods in Molecular Biology, 2016, , .	0.9	3
10	Bioinformatic Identification of Conserved Cis-Sequences in Coregulated Genes. Methods in Molecular Biology, 2016, 1482, 233-245.	0.9	7
11	In Silico Expression Analysis. Methods in Molecular Biology, 2016, 1482, 247-257.	0.9	0
12	Boosting AthaMap Database Content with Data from Protein Binding Microarrays. Plant and Cell Physiology, 2016, 57, e4-e4.	3.1	29
13	Functional dissection of a strong and specific microbeâ€associated molecular patternâ€responsive synthetic promoter. Plant Biotechnology Journal, 2016, 14, 61-71.	8.3	18
14	'In silico expression analysis', a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau030-bau030.	3.0	17
15	Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco. Plant Molecular Biology, 2014, 84, 111-123.	3.9	11
16	Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Molecular Biology, 2014, 84, 371-385.	3.9	55
17	Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC Genomics, 2014, 15, 317.	2.8	19
18	AthaMap Web Tools for the Analysis of Transcriptional and Posttranscriptional Regulation of Gene Expression in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1158, 139-156.	0.9	33

REINHARD HEHL

#	Article	IF	CITATIONS
19	Differential expression of the TMV resistance gene N prevents a hypersensitive response in seeds and during germination. Planta, 2013, 237, 909-915.	3.2	4
20	Integration of Bioinformatics and Synthetic Promoters Leads to the Discovery of Novel Elicitor-Responsive cis-Regulatory Sequences in Arabidopsis Â. Plant Physiology, 2012, 160, 178-191.	4.8	53
21	â€~MicroRNA Targets', a new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana. BioData Mining, 2012, 5, 7.	4.0	23
22	Factors required for the high CO ₂ specificity of the anaerobically induced maize <i>GapC4</i> promoter in transgenic tobacco. Plant, Cell and Environment, 2011, 34, 220-229.	5.7	3
23	Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.). Plant Molecular Biology, 2010, 74, 19-32.	3.9	8
24	AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq034-baq034.	3.0	25
25	AthaMap, integrating transcriptional and post-transcriptional data. Nucleic Acids Research, 2009, 37, D983-D986.	14.5	51
26	Post-harvest regulated gene expression and splicing efficiency in storage roots of sugar beet (Beta) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
27	Internet Resources for Gene Expression Analysis in Arabidopsis thaliana. Current Genomics, 2008, 9, 375-380.	1.6	12
28	AthaMap web tools for the analysis and identification of co-regulated genes. Nucleic Acids Research, 2007, 35, D857-D862.	14.5	48
29	PathoPlant(R): a platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Research, 2007, 35, D841-D845.	14.5	38
30	Taproot promoters cause tissue specific gene expression within the storage root of sugar beet. Planta, 2006, 224, 485-495.	3.2	18
31	AthaMap: from in silico data to real transcription factor binding sites. In Silico Biology, 2006, 6, 243-52.	0.9	20
32	AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana. Nucleic Acids Research, 2005, 33, W397-W402.	14.5	40
33	A fifth member of the tomato 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene family harbours a leucine zipper and is anaerobically induced. DNA Sequence, 2005, 16, 80-82.	0.7	32
34	AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Research, 2004, 32, 368D-372.	14.5	113
35	Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. FEBS Journal, 2004, 271, 4534-4544.	0.2	17

A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet. BMC Biotechnology, 2004, 4, 31.

REINHARD HEHL

#	Article	IF	CITATIONS
37	PathoPlant: a database on plant-pathogen interactions. In Silico Biology, 2004, 4, 529-36.	0.9	21
38	Anaerobic induction of the maize GapC4 promoter in poplar leaves requires light and high CO 2. Planta, 2003, 218, 79-86.	3.2	7
39	TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 2003, 31, 374-378.	14.5	1,825
40	Light-dependent Anaerobic Induction of the Maize Glyceraldehyde-3-Phosphate Dehydrogenase 4 (GapC4) Promoter in Arabidopsis thaliana and Nicotiana tabacum. Annals of Botany, 2003, 91, 149-154.	2.9	12
41	Isolation and molecular analysis of six taproot expressed genes from sugar beet. Journal of Experimental Botany, 2002, 53, 1533-1534.	4.8	13
42	Isolation and molecular analysis of six taproot expressed genes from sugar beet. Journal of Experimental Botany, 2002, 53, 1533-4.	4.8	6
43	Database-assisted promoter analysis. Trends in Plant Science, 2001, 6, 251-255.	8.8	44
44	The TATA box and a Myb binding site are essential for anaerobic expression of a maize GapC4 minimal promoter in tobacco. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1521, 120-125.	2.4	22
45	Anaerobiosis-specific interaction of tobacco nuclear factors with cis-regulatory sequences in the maize GapC4 promoter. Plant Molecular Biology, 2000, 43, 11-21.	3.9	13
46	TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theoretical and Applied Genetics, 1999, 98, 379-386.	3.6	90
47	Induction of the Maize GapC4 Promoter in Transgenic Potato under Anaerobiosis and in Erwinia carotovora-Inoculated Tuber Tissue. Molecular Plant-Microbe Interactions, 1999, 12, 182-188.	2.6	6
48	A promoter for strong and ubiquitous anaerobic gene expression in tobacco. Plant Journal, 1996, 10, 175-183.	5.7	16
49	Inhibition of CAT enzyme activity in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 1996, 45, 31-36.	2.3	1
50	The maize GapC4 promoter confers anaerobic reporter gene expression and shows homology to the maize anthocyanin regulatory locus C1. Plant Molecular Biology, 1995, 29, 1293-1298.	3.9	16
51	Transposon tagging in heterologous host plants. Trends in Genetics, 1994, 10, 385-386.	6.7	16
52	The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell, 1994, 78, 1101-1115.	28.9	1,272
53	Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Molecular Biology, 1991, 16, 369-371.	3.9	85
54	Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Molecular Genetics and Genomics, 1989, 217, 53-59.	2.4	73

#	Article	IF	CITATIONS
55	Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Molecular Genetics and Genomics, 1987, 209, 499-507.	2.4	44
56	Interaction between the Tam1 and Tam2 transposable elements of Antirrhinum majus. Molecular Genetics and Genomics, 1987, 207, 47-53.	2.4	29
57	Isolation and Analysis of Gene Regulatory Sequences. , 0, , .		2