
Munenori Uemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of hand motion differentiates expert and novice surgeons. Journal of Surgical Research, 2014, 188, 8-13.	1.6	61
2	Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2015, 11, 235-246.	2.3	43
3	Effectiveness of basic endoscopic surgical skill training for pediatric surgeons. Pediatric Surgery International, 2010, 26, 947-954.	1.4	34
4	Objective assessment of the suture ligature method for the laparoscopic intestinal anastomosis model using a new computerized system. Surgical Endoscopy and Other Interventional Techniques, 2015, 29, 444-452.	2.4	30
5	Feasibility of an Al-Based Measure of the Hand Motions of Expert and Novice Surgeons. Computational and Mathematical Methods in Medicine, 2018, 2018, 1-6.	1.3	27
6	Development of an objective endoscopic surgical skill assessment system for pediatric surgeons: suture ligature model of the crura of the diaphragm in infant fundoplication. Pediatric Surgery International, 2013, 29, 501-504.	1.4	26
7	Comparison of transtibial and transportal techniques in drilling femoral tunnels during anterior cruciate ligament reconstruction using 3D-CAD models. Open Access Journal of Sports Medicine, 2014, 5, 65.	1.3	26
8	A new innovative laparoscopic fundoplication training simulator with a surgical skill validation system. Surgical Endoscopy and Other Interventional Techniques, 2017, 31, 1688-1696.	2.4	26
9	Procedural surgical skill assessment in laparoscopic training environments. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 543-552.	2.8	23
10	An Endoscopic Surgical Skill Validation System for Pediatric Surgeons Using a Model of Congenital Diaphragmatic Hernia Repair. Journal of Laparoendoscopic and Advanced Surgical Techniques - Part A, 2015, 25, 775-781.	1.0	22
11	Effectiveness of short-term endoscopic surgical skill training for young pediatric surgeons: a validation study using the laparoscopic fundoplication simulator. Pediatric Surgery International, 2015, 31, 963-969.	1.4	22
12	Articulated minimally invasive surgical instrument based on compliant mechanism. International Journal of Computer Assisted Radiology and Surgery, 2015, 10, 1837-1843.	2.8	18
13	Gastric endoscopic submucosal dissection using novel 2.6-mm articulating devices: an ex vivo comparative and in vivo feasibility study. Endoscopy, 2015, 47, 820-824.	1.8	17
14	Significance of metacognitive skills in laparoscopic surgery assessed by essential task simulation. Minimally Invasive Therapy and Allied Technologies, 2014, 23, 165-172.	1.2	13
15	Development of a smart surgical robot with bended forceps for infant congenital esophageal atresia surgery. , 2014, , .		12
16	Waseda Bioinstrumentation system WB-3 as a wearable tool for objective laparoscopic skill evaluation. , 2011, , .		10
17	Evaluation of the 10-year history of a 2-day standardized laparoscopic surgical skills training program at Kyushu University. Surgery Today, 2016, 46, 750-756.	1.5	9
18	Preoperative simulation regarding the appropriate port location for laparoscopic hepaticojejunostomy: a randomized study using a disease-specific training simulator. Pediatric Surgery International, 2016, 32, 901-907.	1.4	5

Munenori Uemura

#	Article	IF	CITATIONS
19	Novel, high-definition 3-D endoscopy system with real-time compression communication system to aid diagnoses and treatment between hospitals in Thailand. Asian Journal of Endoscopic Surgery, 2015, 8, 139-147.	0.9	4
20	Objective assessment of robotic suturing skills with a new computerized system: A step forward in the training of robotic surgeons. Asian Journal of Endoscopic Surgery, 2019, 12, 388-395.	0.9	4
21	Objective evaluation of laparoscopic surgical skills using Waseda bioinstrumentation system WB-3. , 2010, , .		3
22	The effect of forceps manipulation for expert pediatric surgeons using an endoscopic pseudo-viewpoint alternating system: the phenomenon of economical slow and fast performance in endoscopic surgery. Pediatric Surgery International, 2015, 31, 971-976.	1.4	2
23	Development of a Self-Propelled Actively Bendable Colonoscope Robot with a "Party Horn" Propulsion Mechanism. The Abstracts of the International Conference on Advanced Mechatronics Toward Evolutionary Fusion of IT and Mechatronics ICAM, 2015, 2015.6, 68-69.	0.0	2
24	A new objective assessment of the suture ligature method for laparoscopic intestinal anastomosis. Journal of Japan Society of Computer Aided Surgery, 2015, 17, 15-22.	0.0	1
25	Visualization of Affected Lesion in Arthroscopic Surgery Using Augmented Reality Navigation System. Journal of Japan Society of Computer Aided Surgery, 2011, 13, 453-459.	0.0	0
26	Development of a Surgical Robot with Vision Field Control for Single Port Endoscopic Surgery. Transactions of the Society of Instrument and Control Engineers, 2013, 49, 183-189.	0.2	0
27	Current Status of Computer Technologies for Gastroenterological Surgery. Journal of Japan Society of Computer Aided Surgery, 2018, 20, 151-153.	0.0	0
28	Transitions of Surgical Education and Training, Japan, EU and North America. Journal of Japan Society of Computer Aided Surgery, 2018, 20, 135-138.	0.0	0