Martin Zimmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137500/publications.pdf

Version: 2024-02-01

109264 138417 4,119 115 35 58 citations h-index g-index papers 119 119 119 4369 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Mangrove Forests: Structure, Diversity, Ecosystem Processes and Threats. , 2022, , 116-127.		2
2	Plant species- and stage-specific differences in microbial decay of mangrove leaf litter: the older the better?. Oecologia, 2021, 195, 843-858.	0.9	25
3	Drivers of litter mass loss and faunal composition of detritus patches change over time. Ecology and Evolution, 2021, 11, 9642-9651.	0.8	3
4	Crabâ€driven processing does not explain leaf litterâ€deposition in mangrove crab burrows. Ecology and Evolution, 2021, 11, 8856-8862.	0.8	5
5	Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Communications, 2021, 12, 3875.	5.8	52
6	Are Crab-collectors in Mangroves of Northern Brazil (PA) Optimal Foragers?. Wetlands, 2021, 41, 1.	0.7	1
7	Flow and sediment dynamics around structures in mangrove ecosystems—a modeling perspective. , 2021, , 83-120.		4
8	Quantity and quality of organic matter in mangrove sediments. , 2021, , 369-391.		0
9	Phytoextraction Potential of <i>Rhizophora Apiculata:</i> A Case Study in Matang Mangrove Forest Reserve, Malaysia. Tropical Conservation Science, 2020, 13, 194008292094734.	0.6	7
10	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. MSystems, 2020, 5, .	1.7	40
11	Risk Assessment of Heavy Metal Concentrations in Sediments of Matang Mangrove Forest Reserve. Tropical Conservation Science, 2020, 13, 194008292093312.	0.6	9
12	Public Perceptions of Mangrove Forests Matter for Their Conservation. Frontiers in Marine Science, 2020, 7, .	1.2	32
13	Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings. Wetlands, 2020, 40, 1047-1059.	0.7	11
14	Physical Litter Properties: Leaf Toughness and Tensile Strength., 2020,, 187-193.		5
15	Cellulases., 2020,, 397-403.		O
16	Phenol Oxidation. , 2020, , 433-437.		1
17	Interactive effects of temperature and nutrients on mangrove seedling growth and implications for establishment. Marine Environmental Research, 2019, 151, 104750.	1.1	11
18	Effects of temperature on carbon circulation in macroalgal food webs are mediated by herbivores. Marine Biology, $2019, 166, 1.$	0.7	4

#	Article	IF	Citations
19	Effects of crab burrows on sediment characteristics in a Ceriops australis-dominated mangrove forest. Estuarine, Coastal and Shelf Science, 2019, 218, 334-339.	0.9	10
20	The value of small mangrove patches. Science, 2019, 363, 239-239.	6.0	54
21	Metabolic and oxidative stress responses of the jellyfish Cassiopea sp.to changes in seawater temperature. Journal of Sea Research, 2019, 145, 1-7.	0.6	21
22	Modelling of mangrove annual leaf litterfall with emphasis on the role of vegetation structure. Estuarine, Coastal and Shelf Science, 2019, 218, 292-299.	0.9	9
23	Numerical modelling of hydraulics and sediment dynamics around mangrove seedlings: Implications for mangrove establishment and reforestation. Estuarine, Coastal and Shelf Science, 2019, 217, 81-95.	0.9	21
24	Detritus. , 2019, , 292-301.		5
25	Ecosystem Design: When Mangrove Ecology Meets Human Needs. Coastal Research Library, 2018, , 367-376.	0.2	11
26	High-Throughput Techniques As Support for Knowledge-Based Spatial Conservation Prioritization in Mangrove Ecosystems. Coastal Research Library, 2018, , 539-554.	0.2	1
27	Aboveground macrodetritivores and belowground soil processes: Insights on species redundancy. Applied Soil Ecology, 2018, 124, 83-87.	2.1	5
28	A Space-For-Time approach to study the effects of increasing temperature on leaf litter decomposition under natural conditions. Soil Biology and Biochemistry, 2018, 123, 250-256.	4.2	12
29	Discovery of a multispecies shark aggregation and parturition area in the Ba Estuary, Fiji Islands. Ecology and Evolution, 2018, 8, 7079-7093.	0.8	12
30	Influence of environmental conditions on the distribution of Amphipoda, Talitridae, in the lagoon complex of Ghar El Melh (northâ€east of Tunisia). African Journal of Ecology, 2017, 55, 451-464.	0.4	2
31	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	0.5	64
32	Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change. Journal of Sea Research, 2017, 128, 92-97.	0.6	31
33	The influence of crab burrows on sediment salinity in a Rhizophora-dominated mangrove forest in North Brazil during the dry season. Hydrobiologia, 2017, 803, 295-305.	1.0	14
34	Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter. Hydrobiologia, 2017, 803, 307-315.	1.0	7
35	Muddy Waters: Unintentional Consequences of Blue Carbon Research Obscure Our Understanding of Organic Carbon Dynamics in Seagrass Ecosystems. Frontiers in Marine Science, 2017, 4, .	1.2	30
36	Dataset of "true mangroves" plant species traits. Biodiversity Data Journal, 2017, 5, e22089.	0.4	14

#	Article	IF	CITATIONS
37	The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal–Microbe Interactions of Ecological Relevance. Frontiers in Microbiology, 2016, 7, 1472.	1.5	79
38	Hierarchical toolbox: Ensuring scientific accuracy of citizen science for tropical coastal ecosystems. Ecological Indicators, 2016, 66, 242-250.	2.6	16
39	Effects of warming, nutrient enrichment and detritivore presence on litter breakdown and associated microbial decomposers in a simulated temperate woodland creek. Hydrobiologia, 2016, 770, 243-256.	1.0	15
40	Mangrove leaf transportation: Do mimic Avicennia and Rhizophora roots retain or donate leaves?. Marine Ecology - Progress Series, 2016, 551, 107-115.	0.9	8
41	Environment rather than genetic background explains intraspecific variation in the protein-precipitating capacity of phenolic compounds in beech litter. Plant Ecology and Diversity, 2015, 8, 73-79.	1.0	6
42	Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.	2.8	478
43	Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia, 2015, 178, 999-1015.	0.9	23
44	Biodiversity of Talitridae family (Crustacea, Amphipoda) in some Tunisian coastal lagoons. Zoological Studies, 2015, 54, e17.	0.3	16
45	Sterile Surfaces of <i>Mnemiopsis leidyi</i> (Ctenophora) in Bacterial Suspension—A Key to Invasion Success?. Open Journal of Marine Science, 2015, 05, 237-246.	0.3	9
46	Litter traits and palatability to detritivores: a case study across bio-geographical boundaries. Nauplius, 2014, 22, 103-111.	0.3	24
47	Habitat-specific gut microbiota of the marine herbivore Idotea balthica (Isopoda). Journal of Experimental Marine Biology and Ecology, 2014, 455, 22-28.	0.7	16
48	Can terrestrial isopods (Isopoda: Oniscidea) make use of biodegradable plastics?. Applied Soil Ecology, 2014, 77, 72-79.	2.1	18
49	Effects of Warming and Nutrient Enrichment on How Grazing Pressure Affects Leaf Litter-Colonizing Bacteria. Journal of Environmental Quality, 2014, 43, 851-858.	1.0	9
50	Wind-Driven Dynamics of Beach-Cast Wrack in a Tide-Free System. Open Journal of Marine Science, 2014, 04, 68-79.	0.3	27
51	Decomposition of Leaf Litter in a U.S. Saltmarsh is Driven by Dominant Species, Not Species Complementarity. Wetlands, 2013, 33, 83-89.	0.7	17
52	Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. Oecologia, 2013, 172, 667-677.	0.9	67
53	Amphipod diversity at three Tunisian lagoon complexes in relation to environmental conditions. Journal of Natural History, 2013, 47, 2849-2868.	0.2	18
54	Ability of invasive green crabs to handle prey in a recently colonized region. Marine Ecology - Progress Series, 2013, 483, 221-229.	0.9	5

#	Article	IF	CITATIONS
55	Predator/Prey-Interactions Promote Decomposition of Low-Quality Detritus. Wetlands, 2012, 32, 931-938.	0.7	8
56	Influence of Changing Plant Food Sources on the Gut Microbiota of Saltmarsh Detritivores. Microbial Ecology, 2012, 64, 814-825.	1.4	13
57	Drowned or Dry: A Cross-Habitat Comparison of Detrital Breakdown Processes. Ecosystems, 2012, 15, 477-491.	1.6	35
58	Acidification and warming affect both a calcifying predator and prey, but not their interaction. Marine Ecology - Progress Series, 2012, 450, 1-10.	0.9	62
59	Colonisation of Beach-Cast Macrophyte Wrack Patches by Talitrid Amphipods: A Primer. Estuaries and Coasts, 2011, 34, 863-871.	1.0	24
60	Effects of elevated seawater p CO2 on gene expression patterns in the gills of the green crab, Carcinus maenas. BMC Genomics, 2011, 12, 488.	1.2	46
61	Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. Environmental Science and Pollution Research, 2010, 17, 261-269.	2.7	20
62	Sub-littoral and supra-littoral amphipods respond differently to acute thermal stress. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 155, 413-418.	0.7	35
63	Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice?. Developmental and Comparative Immunology, 2009, 33, 1055-1063.	1.0	39
64	Hostâ€specificity of environmentally transmitted <i>Mycoplasma</i> â€like isopod symbionts. Environmental Microbiology, 2008, 10, 2497-2504.	1.8	103
65	Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea). Pedobiologia, 2008, 51, 335-342.	0.5	47
66	Reproductive patterns in syntopic terrestrial isopod species (Crustacea, Isopoda, Oniscidea) from Morocco. Pedobiologia, 2008, 52, 127-137.	0.5	20
67	Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). Journal of Animal Ecology, 2008, 69, 1071-1082.	1.3	7
68	Latitudinal variation in plant?herbivore interactions in European salt marshes. Oikos, 2007, 116, 543-549.	1.2	4
69	Molecular Characterization and Evolution of Arthropod-Pathogenic Rickettsiella Bacteria. Applied and Environmental Microbiology, 2007, 73, 5045-5047.	1.4	64
70	Latitudinal variation in plant–herbivore interactions in European salt marshes. Oikos, 2007, 116, 543-549.	1.2	52
71	Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiology Ecology, 2007, 61, 141-152.	1.3	72
72	Detrital subsidy to the supratidal zone provides feeding habitat for intertidal crabs. Estuaries and Coasts, 2007, 30, 451-458.	1.0	31

#	Article	IF	CITATIONS
73	Intertidal coarse woody debris: A spatial subsidy as shelter or feeding habitat for gastropods?. Estuarine, Coastal and Shelf Science, 2006, 66, 197-203.	0.9	24
74	Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Marine Ecology - Progress Series, 2006, 328, 155-160.	0.9	70
75	Do woodlice and earthworms interact synergistically in leaf litter decomposition?. Functional Ecology, 2005, 19, 7-16.	1.7	69
76	Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 275-283.	0.7	34
77	Degradation of Leaf Litter Phenolics by Aquatic and Terrestrial Isopods. Journal of Chemical Ecology, 2005, 31, 1933-1952.	0.9	11
78	Phenol Oxidation., 2005,, 279-282.		3
79	Questions and possible new directions for research into the biology of terrestrial isopods. European Journal of Soil Biology, 2005, 41, 57-61.	1.4	16
80	Intermediate tidal stress promotes theÂdetritivore-mediated decomposition ofÂSpartina litter. European Journal of Soil Biology, 2005, 41, 135-141.	1.4	6
81	Immune response inÂPorcellioÂscaber (Isopoda: Oniscidea): copper revisited. European Journal of Soil Biology, 2005, 41, 77-83.	1.4	7
82	Cellulases. , 2005, , 249-254.		3
82	Cellulases., 2005, , 249-254. WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507.	1.5	3 203
	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF	1.5	
83	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507.	1.5	203
83	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507. Leaf Toughness., 2005, , 121-125. " Candidatus Hepatoplasma crinochetorum,―a New, Stalk-Forming Lineage of Mollicutes Colonizing		203
83 84 85	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507. Leaf Toughness., 2005, , 121-125. " Candidatus Hepatoplasma crinochetorum,―a New, Stalk-Forming Lineage of Mollicutes Colonizing the Midgut Glands of a Terrestrial Isopod. Applied and Environmental Microbiology, 2004, 70, 6166-6172.	1.4	203 21 81
83 84 85 86	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507. Leaf Toughness., 2005, , 121-125. " Candidatus Hepatoplasma crinochetorum,―a New, Stalk-Forming Lineage of Mollicutes Colonizing the Midgut Glands of a Terrestrial Isopod. Applied and Environmental Microbiology, 2004, 70, 6166-6172. Salt marsh litter and detritivores: A closer look at redundancy. Estuaries and Coasts, 2004, 27, 753-769. ? Candidatus Hepatincola porcellionum? gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Archives of Microbiology, 2004, 181,	1.4	203 21 81 58
83 84 85 86	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507. Leaf Toughness., 2005, 121-125. " Candidatus Hepatoplasma crinochetorum,―a New, Stalk-Forming Lineage of Mollicutes Colonizing the Midgut Glands of a Terrestrial Isopod. Applied and Environmental Microbiology, 2004, 70, 6166-6172. Salt marsh litter and detritivores: A closer look at redundancy. Estuaries and Coasts, 2004, 27, 753-769. ? Candidatus Hepatincola porcellionum? gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Archives of Microbiology, 2004, 181, 299-304. Effects of temperature and precipitation on a flood plain isopod community: a field study. European	1.4 1.7 1.0	203 21 81 58

#	Article	IF	Citations
91	Leaf litter-colonizing microbiota: supplementary food source or indicator of food quality for Porcellio scaber (Isopoda: Oniscidea)?. European Journal of Soil Biology, 2003, 39, 209-216.	1.4	61
92	Balancing nutritional requirements for copper in the common woodlouse, Porcellio scaber (Isopoda:) Tj ETQq0 (0 rgBT /C 2:1	overlgck 10 Tf
93	Bacterial endosymbionts in <i>Asellus aquaticus</i> (Isopoda) and <i>Gammarus pulex</i> (Amphipoda) and their contribution to digestion. Limnology and Oceanography, 2003, 48, 2208-2213.	1.6	50
94	Postembryonic ontogenetic development in <i>Porcellio scaber</i> (Isopoda: Oniscidea): the significance of food. Invertebrate Reproduction and Development, 2002, 42, 75-82.	0.3	11
95	Is decomposition of woodland leaf litter influenced by its species richness?. Soil Biology and Biochemistry, 2002, 34, 277-284.	4.2	75
96	The role of coprophagy in nutrient release from feces of phytophagous insects. Soil Biology and Biochemistry, 2002, 34, 1093-1099.	4.2	41
97	Does Porcellio scaber (Isopoda: Oniscidea) gain from coprophagy?. Soil Biology and Biochemistry, 2002, 34, 1253-1259.	4.2	31
98	Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Marine Biology, 2002, 140, 1207-1213.	0.7	49
99	Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biological Reviews, 2002, 77, 455-493.	4.7	200
100	Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests. Functional Ecology, 2002, 16, 596-607.	1.7	57
101	Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Marine Biology, 2001, 138, 955-963.	0.7	62
102	Suppression of Soil Microorganisms by Emissions of a Magnesite Plant in the Slovak Republic. Water, Air, and Soil Pollution, 2001, 125, 121-132.	1.1	25
103	Responses of the parthenogenetic isopod, Trichoniscus pusillus (Isopoda: Oniscidea), to changes in food quality. Pedobiologia, 2000, 44, 75-85.	0.5	35
104	Correspondence analytical evaluation of factors that influence soil macro-arthropod distribution in abandoned grassland. Pedobiologia, 2000, 44, 695-704.	0.5	24
105	Hemolymph homeostasis in relation to diel feeding activity and microclimate in the prototypal land isopod Ligia pallasii. Canadian Journal of Zoology, 2000, 78, 588-595.	0.4	8
106	Feeding preferences of supralittoral isopods and amphipods. Canadian Journal of Zoology, 2000, 78, 1918-1929.	0.4	97
107	Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). Journal of Animal Ecology, 2000, 69, 1071-1082.	1.3	53
108	Hemolymph homeostasis in relation to diel feeding activity and microclimate in the prototypal land isopod <i>Ligia pallasii</i> . Canadian Journal of Zoology, 2000, 78, 588-595.	0.4	2

#	Article	IF	CITATION
109	The Fate and Effects of Ingested Hydrolyzable Tannins in Porcellio scaber. Journal of Chemical Ecology, 1999, 25, 611-628.	0.9	60
110	Relationships between woodlice (Isopoda: Oniscidea) and microbial density and activity in the field. Biology and Fertility of Soils, 1999, 30, 117-123.	2.3	43
111	Microorganisms and Cellulose Digestion in the Gut of the Woodlouse Porcellio scaber. Journal of Chemical Ecology, 1998, 24, 1397-1408.	0.9	82
112	Combined methods for the determination of microbial activity of leaf litter. European Journal of Soil Biology, 1998, 34, 105-110.	1.4	22
113	Surfactants in the gut fluids of Porcellio scaber (Isopoda: Oniscidea), and their interactions with phenolics. Journal of Insect Physiology, 1997, 43, 1009-1014.	0.9	27
114	Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea: Isopoda)?. Biology and Fertility of Soils, 1997, 24, 435-441.	2.3	66
115	Do woodlice (Isopoda: Oniscidea) produce endogenous cellulases?. Biology and Fertility of Soils, 1997, 26, 155-156.	2.3	14