
Elena Lopez-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137465/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The ultrastructural heterogeneity of lung surfactant revealed by serial section electron tomography: insights into the 3-D architecture of human tubular myelin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L873-L881.	2.9	4
2	Pulmonary glycogen deficiency as a new potential cause of respiratory distress syndrome. Human Molecular Genetics, 2021, 29, 3554-3565.	2.9	3
3	Improved Alveolar Dynamics and Structure After Alveolar Epithelial Type II Cell Transplantation in Bleomycin Induced Lung Fibrosis. Frontiers in Medicine, 2021, 8, 640020.	2.6	6
4	Rescue from Pseudomonas aeruginosa Airway Infection via Stem Cell Transplantation. Molecular Therapy, 2021, 29, 1324-1334.	8.2	6
5	Mechanical ventilation-induced alterations of intracellular surfactant pool and blood–gas barrier in healthy and pre-injured lungs. Histochemistry and Cell Biology, 2021, 155, 183-202.	1.7	6
6	Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica, 2020, 105, 1147-1157.	3.5	7
7	Hidden Microatelectases Increase Vulnerability to Ventilation-Induced Lung Injury. Frontiers in Physiology, 2020, 11, 530485.	2.8	12
8	Alveolar Dynamics and Beyond – The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis. Frontiers in Physiology, 2020, 11, 386.	2.8	23
9	Reply to: Comments on "Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C― American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 399-402.	2.9	1
10	Spermidine supplementation and voluntary activity differentially affect obesity-related structural changes in the mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L312-L324.	2.9	5
11	Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 466-478.	2.9	22
12	In Vitro Functional and Structural Characterization of A Synthetic Clinical Pulmonary Surfactant with Enhanced Resistance to Inhibition. Scientific Reports, 2020, 10, 1385.	3.3	19
13	On Top of the Alveolar Epithelium: Surfactant and the Glycocalyx. International Journal of Molecular Sciences, 2020, 21, 3075.	4.1	32
14	Metabolic Glycoengineering Enables the Ultrastructural Visualization of Sialic Acids in the Glycocalyx of the Alveolar Epithelial Cell Line hAELVi. Frontiers in Bioengineering and Biotechnology, 2020, 8, 614357.	4.1	6
15	Surfactant Protein B Deficiency Induced High Surface Tension: Relationship between Alveolar Micromechanics, Alveolar Fluid Properties and Alveolar Epithelial Cell Injury. International Journal of Molecular Sciences, 2019, 20, 4243.	4.1	20
16	Surfactant dysfunction and alveolar collapse are linked with fibrotic septal wall remodeling in the TGF-β1-induced mouse model of pulmonary fibrosis. Laboratory Investigation, 2019, 99, 830-852.	3.7	30
17	Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. International Journal of Molecular Sciences, 2019, 20, 2438.	4.1	9
18	The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis contributes to regulation of pulmonary fibrosis. Thorax, 2019, 74, 947-957.	5.6	24

#	Article	IF	CITATIONS
19	Flow cytometric analysis of the leukocyte landscape during bleomycin-induced lung injury and fibrosis in the rat. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L109-L126.	2.9	7
20	Protein and lipid fingerprinting of native-like membrane complexes by combining TLC and protein electrophoresis. Journal of Lipid Research, 2019, 60, 430-435.	4.2	4
21	Voluntary Activity Modulates Sugar-Induced Mechanical and Structural Changes of the Lung. Pneumologie, 2019, 73, .	0.1	0
22	An immune cell spray (ICS) formulation allows for the delivery of functional monocyte/macrophages. Scientific Reports, 2018, 8, 16281.	3.3	7
23	Inhibition and counterinhibition of Surfacen, a clinical lung surfactant of natural origin. PLoS ONE, 2018, 13, e0204050.	2.5	12
24	Alveolar Micromechanics in Bleomycin-induced Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 757-769.	2.9	42
25	iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice. Stem Cell Reports, 2018, 11, 696-710.	4.8	40
26	Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L1-L12.	2.9	62
27	Toll-like receptor 4 activation attenuates profibrotic response in control lung fibroblasts but not in fibroblasts from patients with IPF. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L42-L55.	2.9	13
28	Surfactant replacement therapy reduces acute lung injury and collapse induration-related lung remodeling in the bleomycin model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L313-L327.	2.9	39
29	Human SP-A1 Enhances Interfacial Properties of Lung Surfactant and Restores a Proper Behavior in the Presence of Inhibitory Agents. Biophysical Journal, 2017, 112, 228a.	0.5	0
30	Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell and Tissue Research, 2017, 367, 721-735.	2.9	50
31	522. Murine iPSC-Derived Macrophages Improve the In Vivo Disease Phenotype of Pulmonary Alveolar Proteinosis Due to Csf2rb Deficiency. Molecular Therapy, 2016, 24, S208.	8.2	0
32	Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films. Biophysical Journal, 2016, 111, 524-536.	0.5	58
33	Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1260-L1271.	2.9	49
34	Alveolar Derecruitment and Collapse Induration as Crucial Mechanisms in Lung Injury and Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 232-243.	2.9	98
35	Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L63-L75.	2.9	29
36	New approach to the treatment of bleomycin-induced lung fibrosis using pulmonary surfactant as pirfenidone carrier into the lung. , 2015, , .		0

Elena Lopez-Rodriguez

#	Article	IF	CITATIONS
37	Structure-function relationships in pulmonary surfactant membranes: From biophysics to therapy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1568-1585.	2.6	204
38	Interfacial Behavior of Murine Pulmonary Surfactant Expressing Different Human Surfactant Protein SP-A Variants. Biophysical Journal, 2013, 104, 63a.	0.5	1
39	Transient Exposure of Pulmonary Surfactant to Hyaluronan Promotes Structural and Compositional Transformations into a Highly Active State. Journal of Biological Chemistry, 2013, 288, 29872-29881.	3.4	20
40	Membrane-Perturbing Activities of KL4-Related Surfactant Peptides. Biophysical Journal, 2013, 104, 94a-95a.	0.5	0
41	Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants. Critical Care, 2013, 17, R163.	5.8	51
42	Fluorescence and Infrared Spectroscopy for the Study of Structure and Lipid Packing/Hydration in Pulmonary Surfactant Membranes and Lamellar Body -Like Particles. Biophysical Journal, 2012, 102, 647a-648a.	0.5	1
43	Interfacial behavior and structural properties of a clinical lung surfactant from porcine source. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2756-2766.	2.6	22
44	Exposure to Polymers Reverses Inhibition of Pulmonary Surfactant by Serum, Meconium, or Cholesterol in the Captive Bubble Surfactometer. Biophysical Journal, 2012, 103, 1451-1459.	0.5	31
45	Deterioration of Pulmonary Surfactant by Volatile Anesthetics. Biophysical Journal, 2012, 102, 496a.	0.5	0
46	Meconium Impairs Pulmonary Surfactant by a Combined Action of Cholesterol and Bile Acids. Biophysical Journal, 2011, 100, 646-655.	0.5	48
47	Inhibition of Pulmonary Surfactant by Meconium: Biophysical Properties and Molecular Mechanism. Biophysical Journal, 2010, 98, 90a.	0.5	1