
Kajsa K Duke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137368/publications.pdf Version: 2024-02-01

KAISA K DUKE

#	Article	IF	CITATIONS
1	Prediction of fracture initiation and propagation in pelvic bones. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 808-820.	1.6	3
2	Polycarbonate-urethane coating can significantly improve talus implant contact characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104936.	3.1	3
3	Development and application of the average pelvic shape in virtual pelvic fracture reconstruction. International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17, e2199.	2.3	8
4	Quantitative analysis of regional specific pelvic symmetry. Medical and Biological Engineering and Computing, 2021, 59, 369-381.	2.8	2
5	Investigation of pelvic symmetry using CAD software. Medical and Biological Engineering and Computing, 2020, 58, 75-82.	2.8	16
6	Prediction of failure in cancellous bone using extended finite element method. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 988-999.	1.8	1
7	Virtual reconstruction of unilateral pelvic fractures by using pelvic symmetry. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1267-1277.	2.8	15
8	An Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction. Journal of Biomechanical Engineering, 2020, 142, .	1.3	5
9	Effects of Recycling on the Mechanical Behavior of Polypropylene at Room Temperature Through Statistical Analysis Method. Polymer Engineering and Science, 2016, 56, 1283-1290.	3.1	10
10	Multi-material plastic part design via the level set shape and topology optimization method. Engineering Optimization, 2016, 48, 1910-1931.	2.6	5
11	Biomechanical evaluation of the Nice knot. International Journal of Shoulder Surgery, 2016, 10, 15.	1.5	24
12	Computer-aided design–computer-aided engineering associative feature-based heterogeneous object modeling. Advances in Mechanical Engineering, 2015, 7, 168781401561976.	1.6	13
13	A geometric approach to study the contact mechanisms in the patellofemoral joint of normal versus patellofemoral pain syndrome subjects. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 391-400.	1.6	13
14	A novel CACD/CAD/CAE integrated design framework for fiber-reinforced plastic parts. Advances in Engineering Software, 2015, 87, 13-29.	3.8	49
15	Three-dimensional geometric analysis of the talus for designing talar prosthetics. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 371-378.	1.8	12
16	Improving greater trochanteric reattachment with a novel cable plate system. Medical Engineering and Physics, 2013, 35, 383-391.	1.7	9
17	Influence of Girth Weld Flaw and Pipe Parameters on the Critical Longitudinal Strain of Steel Pipes. , 2012, , .		0
18	The effects of femoral neck cut, cable tension, and muscles forces on the greater trochanter fixation. Medical and Biological Engineering and Computing, 2012, 50, 411-417.	2.8	5

Kajsa K Duke

#	Article	IF	CITATIONS
19	Effect of force tightening on cable tension and displacement in greater trochanter reattachment. , 2011, 2011, 5749-52.		3
20	Biomechanical Analysis of Chlorhexidine Power Irrigation to Disinfect Contaminated Anterior Cruciate Ligament Grafts. American Journal of Sports Medicine, 2011, 39, 1528-1533.	4.2	12
21	Dynamic Positioning of Scoliotic Patients During Spine Instrumentation Surgery. Journal of Spinal Disorders and Techniques, 2009, 22, 190-196.	1.9	8
22	Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Medical and Biological Engineering and Computing, 2008, 46, 33-41.	2.8	14
23	Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clinical Biomechanics, 2005, 20, 923-931.	1.2	42