Yadienka Martinez-Rubi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular engineering of the surface of boron nitride nanotubes for manufacture of thermally conductive dielectric polymer composites. Applied Surface Science, 2022, 587, 152779.	6.1	11
2	Glass Fiber–Epoxy Composites with Boron Nitride Nanotubes for Enhancing Interlaminar Properties in Structures. ACS Omega, 2022, 7, 10674-10686.	3.5	6
3	Boron Nitride Nanotube Coatings for Thermal Management of Printed Silver Inks on Temperature Sensitive Substrates. Advanced Electronic Materials, 2021, 7, 2001035.	5.1	7
4	In-Flight Plasma Functionalization of Boron Nitride Nanotubes with Ammonia for Composite Applications. ACS Applied Nano Materials, 2020, 3, 294-302.	5.0	12
5	Conformational Order in Aggregated rra-P3HT as an Indicator of Quality of Boron Nitride Nanotubes. Journal of Physical Chemistry Letters, 2020, 11, 4179-4185.	4.6	6
6	Scalable Gas-Phase Purification of Boron Nitride Nanotubes by Selective Chlorine Etching. Chemistry of Materials, 2020, 32, 3911-3921.	6.7	38
7	Stretchable Structure for a Benchtop-Scale Morphed Leading Edge Demonstration. , 2019, , .		5
8	Assessing size-dependent cytotoxicity of boron nitride nanotubes using a novel cardiomyocyte AFM assay. Nanoscale Advances, 2019, 1, 1914-1923.	4.6	24
9	Boron Nitride Nanotube Composites and Applications. , 2019, , 91-111.		29
10	Quality Assessment of Bulk Boron Nitride Nanotubes for Advancing Research, Commercial, and Industrial Applications. ACS Applied Nano Materials, 2019, 2, 2054-2063.	5.0	19
11	Enhanced Thermal Conductivity in Polymer Nanocomposites via Covalent Functionalization of Boron Nitride Nanotubes with Short Polyethylene Chains for Heat-Transfer Applications. ACS Applied Nano Materials, 2019, 2, 440-451.	5.0	35
12	Dynamic mechanical characterization of boron nitride nanotube—epoxy nanocomposites. Polymer Composites, 2019, 40, 2119-2131.	4.6	13
13	Multifunctional skin materials based on tailorable, carbon-nanotube-polyurethane composite sheets. , 2018, , .		4
14	Evaluation of Novel Solutions for Lightning Strike Protection of Composites Using Current Carrying Capacity. , 2018, , .		0
15	Nanoreinforced epoxy and adhesive joints incorporating boron nitride nanotubes. International Journal of Adhesion and Adhesives, 2018, 84, 194-201.	2.9	27
16	Carbon nanotubes diminish IgE-mediated degranulation in the rat basophilic leukemia (RBL)-2H3 cell line. NanoImpact, 2018, 9, 31-41.	4.5	1
17	Enhanced Shear Performance of Hybrid Glass Fiber–Epoxy Laminates Modified with Boron Nitride Nanotubes. ACS Applied Nano Materials, 2018, 1, 2709-2717.	5.0	20
18	Epoxy resin nanocomposites with hydroxyl (OH) and amino (NH2) functionalized boron nitride nanotubes. Nanocomposites, 2018, 4, 10-17.	4.2	20

Yadienka Martinez-Rubi

#	Article	IF	CITATIONS
19	Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes. Acta Astronautica, 2017, 141, 57-63.	3.2	25
20	Fabrication of High Content Carbon Nanotube–Polyurethane Sheets with Tailorable Properties. ACS Applied Materials & Interfaces, 2017, 9, 30840-30849.	8.0	30
21	Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon, 2016, 104, 78-89.	10.3	31
22	Self-Assembly and Visualization of Poly(3-hexyl-thiophene) Chain Alignment along Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2015, 119, 26605-26610.	3.1	31
23	Polymer nanocomposites from free-standing, macroscopic boron nitride nanotube assemblies. RSC Advances, 2015, 5, 41186-41192.	3.6	37
24	Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Composites Part B: Engineering, 2015, 69, 87-93.	12.0	132
25	Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology, 2014, 8, 295-304.	3.0	83
26	Effects of SWCNTs on mechanical and thermal performance of epoxy at elevated temperatures. Journal of Materials Science, 2013, 48, 7664-7672.	3.7	6
27	Influence of the reaction stoichiometry on the mechanical and thermal properties of SWCNT-modified epoxy composites. Nanotechnology, 2013, 24, 265701.	2.6	13
28	Single-walled carbon nanotube–modified epoxy thin films for continuous crack monitoring of metallic structures. Structural Health Monitoring, 2012, 11, 589-601.	7.5	17
29	Processing and properties of PEEK/glass fiber laminates: Effect of addition of single-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1267-1279.	7.6	50
30	Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties. Nanotechnology, 2012, 23, 285702.	2.6	14
31	Toughening of Epoxy Matrices with Reduced Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2011, 3, 2309-2317.	8.0	77
32	Coupled thermogravimetry, mass spectrometry, and infrared spectroscopy for quantification of surface functionality on single-walled carbon nanotubes. Analytical and Bioanalytical Chemistry, 2010, 396, 1037-1044.	3.7	16
33	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties. Carbon, 2010, 48, 3485-3499.	10.3	88
34	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties. Carbon, 2010, 48, 3500-3511.	10.3	114
35	Development and characterization of PEEK/carbon nanotube composites. Carbon, 2009, 47, 3079-3090.	10.3	170
36	About the solubility of reduced SWCNT in DMSO. Nanotechnology, 2009, 20, 245701.	2.6	16

3

#	Article	IF	CITATIONS
37	NUCLEATION AND SELECTIVE GROWTH OFPOLYMORPHS OF CALCIUM CARBONATE ON ORGANIC-INORGANIC HYBRID FILMS. Journal of the Chilean Chemical Society, 2008, 53, .	1.2	1
38	Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room temperature. Chemical Communications, 2007, , 5146.	4.1	55