Piotr J Balwierz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136813/publications.pdf

Version: 2024-02-01

23 papers 4,972 citations

361413 20 h-index 642732 23 g-index

25 all docs

25 docs citations

25 times ranked

11996 citing authors

#	Article	lF	Citations
1	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
2	Sox4 Is a Master Regulator of Epithelial-Mesenchymal Transition by Controlling Ezh2 Expression and Epigenetic Reprogramming. Cancer Cell, 2013, 23, 768-783.	16.8	415
3	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
4	ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Research, 2014, 24, 869-884.	5 . 5	278
5	Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. Diabetes, 2012, 61, 1986-1993.	0.6	263
6	The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Human Molecular Genetics, 2010, 19, $1153-1164$.	2.9	259
7	Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine, 2012, 18, 529-537.	30.7	224
8	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	27.8	224
9	Transcription and enhancer profiling in human monocyte subsets. Blood, 2014, 123, e90-e99.	1.4	157
10	SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates. Nucleic Acids Research, 2012, 41, D214-D220.	14.5	137
11	Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biology, 2009, 10, R79.	9.6	131
12	Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Research, 2013, 23, 60-73.	5 . 5	108
13	Expression and Processing of a Small Nucleolar RNA from the Epstein-Barr Virus Genome. PLoS Pathogens, 2009, 5, e1000547.	4.7	84
14	Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Research, 2013, 15, R36.	5.0	82
15	The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. Blood, 2014, 123, e68-e78.	1.4	77
16	The Corepressor NCoR1 Antagonizes PGC-1 <i>\hat{l}±</i> and Estrogen-Related Receptor <i>\hat{l}±</i> in the Regulation of Skeletal Muscle Function and Oxidative Metabolism. Molecular and Cellular Biology, 2012, 32, 4913-4924.	2.3	74
17	FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biology, 2009, 10, R39.	9.6	67
18	Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nature Communications, 2020, 11, 168.	12.8	37

#	Article	IF	CITATIONS
19	Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. Nucleic Acids Research, 2014, 42, 9313-9326.	14.5	32
20	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	21.4	26
21	An epigenetic profile of early Tâ€cell development from multipotent progenitors to committed Tâ€cell descendants. European Journal of Immunology, 2014, 44, 1181-1193.	2.9	21
22	Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Developmental Cell, 2021, 56, 641-656.e5.	7.0	18
23	Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics. Scientific Reports, 2021, 11, 22717.	3.3	6