

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136792/publications.pdf Version: 2024-02-01

Deili

#	Article	IF	CITATIONS
1	Enhancing the property of composite pervaporation desalination membrane by fabricating a less resistance substrate with porous but skinless surface structure. Desalination, 2022, 525, 115496.	4.0	9
2	Spray-coated tough thin film composite membrane for pervaporation desalination. Chemical Engineering Research and Design, 2022, 179, 493-501.	2.7	7
3	Preparation of defect-free hollow fiber membranes derived from PMDA-ODA polyimide for gas separation. Chemical Engineering Research and Design, 2022, 179, 154-161.	2.7	6
4	Carbon molecular sieve hollow fiber composite membrane derived from PMDA-ODA polyimide for gas separation. High Performance Polymers, 2022, 34, 444-454.	0.8	8
5	Microwave-induced ultrafast crosslinking of Poly (vinyl alcohol) blended with nanoparticles as wave absorber for pervaporation desalination. , 2022, 2, 100021.		5
6	Tubular membranes and modules. , 2021, , 431-448.		1
7	Polystyrene derivative-blended nanocomposite membranes for pervaporation dehydration of hydrazine. Korean Journal of Chemical Engineering, 2021, 38, 587-603.	1.2	5
8	Fabrication of high-performance pervaporation membrane for sulfuric acid recovery via interfacial polymerization. Journal of Membrane Science, 2021, 624, 119108.	4.1	12
9	Molecular design of chlorine-resistant polymer for pervaporation desalination. Separation and Purification Technology, 2021, 268, 118671.	3.9	9
10	Fabricating thin-film composite membranes for pervaporation desalination via photo-crosslinking. Desalination, 2021, 512, 115128.	4.0	22
11	Studies on the fouling behavior and cleaning method of pervaporation desalination membranes for reclamation of reverse osmosis concentrated water. Separation and Purification Technology, 2021, 274, 119034.	3.9	21
12	Fabrication of high-performance composite membranes based on hierarchically structured electrospun nanofiber substrates for pervaporation desalination. Journal of Membrane Science, 2021, 638, 119672.	4.1	27
13	Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration. Separation and Purification Technology, 2020, 235, 116206.	3.9	38
14	Decarboxylation Cross-Linking of Triptycene-Based Tröger's Base Polymers for Gas Separation. Industrial & Engineering Chemistry Research, 2020, 59, 18640-18648.	1.8	16
15	Insight into the influence of humic acid and sodium alginate fractions on membrane fouling in coagulation-ultrafiltration combined system. Environmental Research, 2020, 191, 110228.	3.7	25
16	Preparation of Thermally Imidized Polyimide Nanofiltration Membranes with Macrovoid-Free Structures. Industrial & Engineering Chemistry Research, 2020, 59, 14096-14105.	1.8	16
17	Preparation of UiOâ€66/DMBPTB and UiOâ€66â€NH ₂ /DMBPTB Nanocomposite Membranes with Enhanced CO ₂ /CH ₄ Selectivity for Gas Separation. ChemistrySelect, 2020, 5, 14251-14260.	0.7	2
18	Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. Journal of Membrane Science, 2020, 611, 118367.	4.1	29

Pei Li

#	Article	IF	CITATIONS
19	Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nature Communications, 2020, 11, 1461.	5.8	141
20	Preparation of pervaporation membranes by interfacial polymerization for acid wastewater purification. Chemical Engineering Research and Design, 2020, 156, 171-179.	2.7	26
21	Compatibilizing hydrophilic and hydrophobic polymers <i>via</i> spray coating for desalination. Journal of Materials Chemistry A, 2020, 8, 8462-8468.	5.2	60
22	High-Flux Direct-Contact Pervaporation Membranes for Desalination. ACS Applied Materials & Interfaces, 2019, 11, 28461-28468.	4.0	48
23	An efficient method allowing for continuous preparation of PDMS/PVDF composite membrane. AICHE Journal, 2019, 65, e16710.	1.8	22
24	Improving the pervaporation performance of PDMS membranes for n-butanol by incorporating silane-modified ZIF-8 particles. Separation and Purification Technology, 2019, 215, 163-172.	3.9	72
25	Special Issue on "Novel Membrane Technologies for Traditional Industrial Processes― Processes, 2019, 7, 144.	1.3	1
26	Oxidative crosslinking of copolyimides at sub-Tg temperatures to enhance resistance against CO2-induced plasticization. Journal of Membrane Science, 2019, 583, 40-48.	4.1	21
27	Formation of Macrovoid-Free PMDA-MDA Polyimide Membranes Using a Gelation/Non-Solvent-Induced Phase Separation Method for Organic Solvent Nanofiltration. Industrial & Engineering Chemistry Research, 2019, 58, 6712-6720.		24
28	Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes, 2019, 7, 51.	1.3	57
29	Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300. Journal of Membrane Science, 2019, 579, 141-150.	4.1	64
30	Effects of dope compositions on morphologies and separation performances of PMDA-ODA polyimide hollow fiber membranes in aqueous and organic solvent systems. Applied Surface Science, 2019, 473, 1038-1048.		46
31	Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. Journal of Membrane Science, 2019, 575, 135-146.	4.1	49
32	High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination. Environmental Technology (United Kingdom), 2019, 40, 312-320.	1.2	40
33	Post-crosslinking of triptycene-based Tröger's base polymers with enhanced natural gas separation performance. Journal of Membrane Science, 2018, 556, 277-284.	4.1	69
34	Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 2018, 15, 146-156.	2.4	42
35	Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination, 2018, 433, 132-140.	4.0	70
36	Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. Journal of Membrane Science, 2018, 546, 90-99.	4.1	83

Pei Li

#	Article	IF	CITATIONS
37	Effects of Spinning Temperature on the Morphology and Performance of Poly(ether sulfone) Gas Separation Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 2018, 57, 329-338.	1.8	13
38	Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties. Journal of Membrane Science, 2018, 560, 87-96.		50
39	Fabrication of High Performance Pervaporation Desalination Composite Membranes by Optimizing the Support Layer Structures. Industrial & Engineering Chemistry Research, 2018, 57, 11178-11185.	1.8	39
40	Preparation and Gas Separation Properties of Spirobichromanâ€Based Polyimides. Macromolecular Chemistry and Physics, 2018, 219, 1800157.	1.1	11
41	Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. Journal of Membrane Science, 2017, 528, 206-216.	4.1	100
42	Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides. Journal of Membrane Science, 2017, 530, 176-184.	4.1	62
43	Molecular Design of Tröger's Base-Based Polymers Containing Spirobichroman Structure for Gas Separation. Industrial & Engineering Chemistry Research, 2017, 56, 12783-12788.	1.8	18
44	Fabrication of PMDA-ODA hollow fibers with regular cross-section morphologies and study on the formation mechanism. Journal of Membrane Science, 2017, 544, 1-11.	4.1	38
45	Designing an atmosphere controlling hollow fiber membrane system for mango preservation. Korean Journal of Chemical Engineering, 2017, 34, 2019-2026.		2
46	Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Applied Surface Science, 2017, 394, 149-159.		106
47	Gas transport properties in (6FDAâ€RTIL)â€ (6FDAâ€MDA) block copolyimides. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
48	Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination. Applied Surface Science, 2016, 387, 521-528.	3.1	185
49	Fabrication of Superhydrophobic–Superoleophilic Fabrics by an Etching and Dip-Coating Two-Step Method for Oil–Water Separation. Industrial & Engineering Chemistry Research, 2016, 55, 5030-5035.	1.8	91
50	Electrospun polymer of intrinsic microporosity fibers and their use in the adsorption of contaminants from a nonaqueous system. Journal of Applied Polymer Science, 2016, 133, .	1.3	21
51	Perfluorooctane sulfonate removal by nanofiltration membrane—the effect and interaction of magnesium ion / humic acid. Journal of Membrane Science, 2016, 503, 31-41.		75
52	Selective adsorption and separation of organic dyes in aqueous solutions by hydrolyzed PIM-1 microfibers. Chemical Engineering Research and Design, 2016, 109, 76-85.	2.7	50
53	Removal of perfluorooctane sulfonates from water by a hybrid coagulation–nanofiltration process. Chemical Engineering Journal, 2016, 289, 7-16.	6.6	37
54	Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. Journal of Membrane Science, 2015, 477, 74-85.	4.1	64

Pei Li

IF

CITATIONS

55	Effect of non-solvent additives on the morphology and separation performance of poly(m -phenylene) Tj ETQq1	1 0,78431 4.0	.4 ṟǥƁT /Ova
56	Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil–Water Mixtures and Cleanup of Oil Soluble Contaminants. Industrial & Engineering Chemistry Research, 2015, 54, 8772-8781.	1.8	111
57	nperature dependence of gas sorption and permeation in PIM-1. Journal of Membrane Science, 2014, 9, 380-388.		82
58	PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. Journal of Membrane Science, 2014, 453, 614-623.	4.1	76
59	Short- and Long-Term Performance of the Thin-Film Composite Forward Osmosis (TFC-FO) Hollow Fiber Membranes for Oily Wastewater Purification. Industrial & Engineering Chemistry Research, 2014, 53, 14056-14064.	1.8	50
60	High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39, 5043-5053.	3.8	116
61	Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications. European Polymer Journal, 2013, 49, 482-491.	2.6	44
62	The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation. Journal of Membrane Science, 2013, 434, 18-25.	4.1	130
63	everse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38, 40-766.		166
64	as sorption and permeation in PIM-1. Journal of Membrane Science, 2013, 432, 50-57.		200
65	Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436, 221-231.	4.1	174
66	High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14, 1052.		189
67	PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. International Journal of Hydrogen Energy, 2012, 37, 11796-11804.	3.8	135
68	Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin. Journal of Membrane Science, 2012, 390-391, 141-151.		84
69	Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. Journal of Membrane Science, 2012, 407-408, 47-57.		176
70	Aging and carbon dioxide plasticization of thin polyetherimide films. Polymer, 2012, 53, 2099-2108.	1.8	41
71	CO ₂ Separation from Flue Gas Using Polyvinyl-(Room Temperature Ionic Liquid)–Room Temperature Ionic Liquid Composite Membranes. Industrial & Engineering Chemistry Research, 2011, 50, 9344-9353.		116
72	Synthesis of copolyimides based on room temperature ionic liquid diamines. Journal of Polymer Science Part A, 2010, 48, 4036-4046.	2.5	58

ARTICLE

#

Ρ	E I	
	Е.	_

#	Article	IF	CITATIONS
73	Fabrication of high-performance pervaporation composite membrane for alkaline wastewater reclamation. Frontiers of Chemical Science and Engineering, 0, , 1.	2.3	1
74	A chemical imidization method to avoid pore collapsing and selective layer thickening of PMDA-ODA polyimide nanofiltration membranes. , 0, 115, 33-44.		2