
Ya-Zhen Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136650/publications.pdf Version: 2024-02-01

Υλ-Ζηέν Οιν

#	Article	IF	CITATIONS
1	MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood, 2013, 121, 4056-4062.	1.4	277
2	Combined use of WT1 and flow cytometry monitoring can promote sensitivity of predicting relapse after allogeneic HSCT without affecting specificity. Annals of Hematology, 2013, 92, 1111-1119.	1.8	87
3	Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: A comprehensive large-scale study from a single Chinese center. Leukemia Research, 2014, 38, 1435-1440.	0.8	63
4	Nucleophosmin mutations in Chinese adults with acute myelogenous leukemia. Annals of Hematology, 2009, 88, 159-166.	1.8	51
5	The dynamics of RUNX1-RUNX1T1 transcript levels after allogeneic hematopoietic stem cell transplantation predict relapse in patients with t(8;21) acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 44.	17.0	51
6	Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leukemia Research, 2006, 30, 1159-1165.	0.8	50
7	Haploidentical Hematopoietic Stem Cell Transplantation without InÂVitro T Cell Depletion for the Treatment of Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. Biology of Blood and Marrow Transplantation, 2015, 21, 1110-1116.	2.0	44
8	Impaired Function of Bone Marrow Mesenchymal Stem Cells from Immune Thrombocytopenia Patients in Inducing Regulatory Dendritic Cell Differentiation Through the Notch-1/Jagged-1 Signaling Pathway. Stem Cells and Development, 2017, 26, 1648-1661.	2.1	36
9	Oral arsenic and all-trans retinoic acid for high-risk acute promyelocytic leukemia. Blood, 2018, 131, 2987-2989.	1.4	36
10	Allogeneic Stem Cell Transplantation versus Tyrosine Kinase Inhibitors Combined with Chemotherapy in Patients with Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. Biology of Blood and Marrow Transplantation, 2018, 24, 741-750.	2.0	36
11	Identification of a novel CPSF6-RARG fusion transcript in acute myeloid leukemia resembling acute promyelocytic leukemia. Leukemia, 2018, 32, 2285-2287.	7.2	32
12	Allogeneic stem cell transplant may improve the outcome of adult patients with inv(16) acute myeloid leukemia in first complete remission with poor molecular responses to chemotherapy. Leukemia and Lymphoma, 2015, 56, 3116-3123.	1.3	31
13	Prevalence and outcomes of uncommon <i><scp>BCR</scp>â€<scp>ABL</scp>1</i> fusion transcripts in patients with chronic myeloid leukaemia: data from a single centre. British Journal of Haematology, 2018, 182, 693-700.	2.5	31
14	Homoharringtonine, aclarubicin and cytarabine (HAA) regimen as the first course of induction therapy is highly effective for acute myeloid leukemia with t (8;21). Leukemia Research, 2016, 44, 40-44.	0.8	29
15	Which method better evaluates the molecular response in newly diagnosed chronic phase chronic myeloid leukemia patients with imatinib treatment, BCR-ABLIS or log reduction from the baseline level?. Leukemia Research, 2013, 37, 1035-1040.	0.8	28
16	Monitoring Mixed Lineage Leukemia Expression May Help Identify Patients with Mixed Lineage Leukemia–Rearranged Acute Leukemia Who Are at High Risk of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 929-936.	2.0	28
17	The impact of minimal residual disease prior to unmanipulated haploidentical hematopoietic stem cell transplantation in patients with acute myeloid leukemia in complete remission. Leukemia and Lymphoma, 2017, 58, 1135-1143.	1.3	27
18	PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leukemia and Lymphoma, 2013, 54, 1442-1449.	1.3	23

#	Article	IF	CITATIONS
19	Cysteine and glycine-rich protein 2 (<i>CSRP2</i>) transcript levels correlate with leukemia relapse and leukemia-free survival in adults with B-cell acute lymphoblastic leukemia and normal cytogenetics. Oncotarget, 2017, 8, 35984-36000.	1.8	23
20	<i>PRAME</i> Gene Copy Number Variation Is Related to Its Expression in Multiple Myeloma. DNA and Cell Biology, 2017, 36, 1099-1107.	1.9	22
21	Heterogeneous prognosis among KIT mutation types in adult acute myeloid leukemia patients with t(8;21). Blood Cancer Journal, 2018, 8, 76.	6.2	21
22	Meis1 is critical to the maintenance of human acute myeloid leukemia cells independent of MLL rearrangements. Annals of Hematology, 2017, 96, 567-574.	1.8	19
23	B-cell acute lymphoblastic leukemia associated with SET-NUP214 rearrangement: A case report and review of the literature. Oncology Letters, 2016, 11, 2644-2650.	1.8	18
24	Interferon-α ls Effective for Treatment of Minimal Residual Disease in Patients with t(8;21) Acute Myeloid Leukemia After Allogeneic Hematopoietic Stem Cell Transplantation: Results of a Prospective Registry Study. Oncologist, 2018, 23, 1349-1357.	3.7	17
25	High EVI1 Expression Predicts Poor Outcomes in Adult Acute Myeloid Leukemia Patients with Intermediate Cytogenetic Risk Receiving Chemotherapy. Medical Science Monitor, 2018, 24, 758-767.	1.1	17
26	Minimal residual disease monitoring and preemptive immunotherapy in myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Annals of Hematology, 2016, 95, 1233-1240.	1.8	16
27	CD38+ CD58â^' is an independent adverse prognostic factor in paediatric Philadelphia chromosome negative B cell acute lymphoblastic leukaemia patients. Leukemia Research, 2016, 43, 33-38.	0.8	16
28	The predictive value of minimal residual disease when facing the inconsistent results detected by real-time quantitative PCR and flow cytometry in NPM1-mutated acute myeloid leukemia. Annals of Hematology, 2020, 99, 73-82.	1.8	15
29	Combination of White Blood Cell Count at Presentation With Molecular Response at 3 Months Better Predicts Deep Molecular Responses to Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia Patients. Medicine (United States), 2016, 95, e2486.	1.0	14
30	Interferon-Î \pm as maintenance therapy can significantly reduce relapse in patients with favorable-risk acute myeloid leukemia. Leukemia and Lymphoma, 2021, 62, 2949-2956.	1.3	14
31	Preemptive Interferon-α Therapy Could Protect Against Relapse and Improve Survival of Acute Myeloid Leukemia Patients After Allogeneic Hematopoietic Stem Cell Transplantation: Long-Term Results of Two Registry Studies. Frontiers in Immunology, 2022, 13, 757002.	4.8	13
32	PRAME overexpression predicted good outcome in pediatric B-cell acute lymphoblastic leukemia patients receiving chemotherapy. Leukemia Research, 2017, 52, 43-49.	0.8	12
33	The initial level of MLL-partial tandem duplication affects the clinical outcomes in patients with acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 967-972.	1.3	12
34	Low WT1 transcript levels at diagnosis predicted poor outcomes of acute myeloid leukemia patients with t(8;21) who received chemotherapy or allogeneic hematopoietic stem cell transplantation. Chinese Journal of Cancer, 2016, 35, 46.	4.9	11
35	Ruxolitinib/nilotinib cotreatment inhibits leukemia-propagating cells in Philadelphia chromosome-positive ALL. Journal of Translational Medicine, 2017, 15, 184.	4.4	11
36	DPEP1 expression promotes proliferation and survival of leukaemia cells and correlates with relapse in adults with common B cell acute lymphoblastic leukaemia. British Journal of Haematology, 2020, 190, 67-78.	2.5	11

#	Article	IF	CITATIONS
37	The Prognostic Significance of ZNF384 Fusions in Adult Ph-Negative B-Cell Precursor Acute Lymphoblastic Leukemia: A Comprehensive Cohort Study From a Single Chinese Center. Frontiers in Oncology, 2021, 11, 632532.	2.8	9
38	The impact of the combination of KIT mutation and minimal residual disease on outcome in t(8;21) acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 67.	6.2	9
39	Haploidentical hematopoietic stem cell transplantation for pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia in the imatinib era. Leukemia Research, 2017, 59, 136-141.	0.8	8
40	The prognostic significance of Wilms' tumor gene 1 (WT1) expression at diagnosis in adults with Ph-negative B cell precursor acute lymphoblastic leukemia. Annals of Hematology, 2019, 98, 2551-2559.	1.8	8
41	Overexpression of WT1 and PRAME predicts poor outcomes of patients with myelodysplastic syndromes with thrombocytopenia. Blood Advances, 2019, 3, 3406-3418.	5.2	8
42	Preemptive Immunotherapy for Minimal Residual Disease in Patients With t(8;21) Acute Myeloid Leukemia After Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Oncology, 2021, 11, 773394.	2.8	8
43	Molecular Detection of BCR-ABL in Chronic Myeloid Leukemia. Methods in Molecular Biology, 2016, 1465, 1-15.	0.9	7
44	A seven-color panel including CD34 and TdT could be applied in >97% patients with T cell lymphoblastic leukemia for minimal residual disease detection independent of the initial phenotype. Leukemia Research, 2018, 72, 12-19.	0.8	7
45	High aldehyde dehydrogenase activity at diagnosis predicts relapse in patients with t(8;21) acute myeloid leukemia. Cancer Medicine, 2019, 8, 5459-5467.	2.8	7
46	<i>S100A16</i> suppresses the growth and survival of leukaemia cellsÂand correlates with relapse and relapse free survival in adults with Philadelphia chromosomeâ€negative Bâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 185, 836-851.	2.5	7
47	Development of a poor-prognostic-mutations derived immune prognostic model for acute myeloid leukemia. Scientific Reports, 2021, 11, 4856.	3.3	7
48	Outcome and Minimal Residual Disease Monitoring in Patients with t(16;21) Acute Myelogenous Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 163-168.	2.0	6
49	Incidence, risk factors and outcomes of sinusoidal obstruction syndrome after haploidentical allogeneic stem cell transplantation. Annals of Hematology, 2019, 98, 1733-1742.	1.8	6
50	Prognostic significance of SET-NUP214 fusion gene in acute leukemia after allogeneic hematopoietic stem cell transplantation. Medicine (United States), 2020, 99, e23569.	1.0	6
51	Wilms' tumor gene 1 is an independent prognostic factor for pediatric acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation. BMC Cancer, 2021, 21, 292.	2.6	5
52	Subgroup Analysis Can Optimize the Relapse-Prediction Cutoff Value for WT1 Expression After Allogeneic Hematologic Stem Cell Transplantation in Acute Myeloid Leukemia. Journal of Molecular Diagnostics, 2020, 22, 188-195.	2.8	4
53	Characterization of somatic mutation-associated microenvironment signatures in acute myeloid leukemia patients based on TCGA analysis. Scientific Reports, 2020, 10, 19037.	3.3	4
54	Profiles of NK cell subsets are associated with successful tyrosine kinase inhibitor discontinuation in chronic myeloid leukemia and changes following interferon treatment. Annals of Hematology, 2021, 100, 2557-2566.	1.8	4

#	Article	IF	CITATIONS
55	Prognostic significance of TIM-3 expression pattern at diagnosis in patients with t(8;21) acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 152-161.	1.3	4
56	Independent prognostic significance of <scp>TP53</scp> mutations in adult acute myeloid leukaemia with complex karyotype. International Journal of Laboratory Hematology, 2022, , .	1.3	4
57	Methylation pattern of preferentially expressed antigen of melanoma in acute myeloid leukemia and myelodysplastic syndromes. Oncology Letters, 2017, 13, 2823-2830.	1.8	3
58	Concordant optimal molecular and cytogenetic responses at both 3 and 6 months predict a higher probability of MR4.5 achievement in patients with chronic myeloid leukemia treated with imatinib. Leukemia and Lymphoma, 2017, 58, 1384-1393.	1.3	3
59	Overexpressed WT1 exhibits a specific immunophenotype in intermediate and poor cytogenetic risk acute myeloid leukemia. Annals of Hematology, 2020, 99, 215-221.	1.8	3
60	High <i>PRDM16</i> expression predicts poor outcomes in adult acute myeloid leukemia patients with intermediate cytogenetic risk: a comprehensive cohort study from a single Chinese center. Leukemia and Lymphoma, 2021, 62, 185-193.	1.3	3
61	Minimal residual disease monitoring and preemptive immunotherapies for frequent 11q23 rearranged acute leukemia after allogeneic hematopoietic stem cell transplantation. Annals of Hematology, 2021, 100, 1267-1281.	1.8	3
62	PMLâ€RARA transcript levels at the end of induction therapy are associated with prognosis in nonâ€highâ€risk acute promyelocytic leukaemia with all―trans retinoic acid plus arsenic in frontâ€line therapy: longâ€term followâ€up of a singleâ€centre cohort study. British Journal of Haematology, 2021, 195, 722-730.	2.5	3
63	<p>Both Methylation and Copy Number Variation Participated in the Varied Expression of PRAME in Multiple Myeloma</p> . OncoTargets and Therapy, 2020, Volume 13, 7545-7553.	2.0	2
64	Monitoring of post-transplant MLL-PTD as minimal residual disease can predict relapse after allogeneic HSCT in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer, 2022, 22, 11.	2.6	2
65	Combination of <i>KIT</i> and <i>FLT3â€</i> ITD mutation status with minimal residual disease levels guides treatment strategy for adult patients with inv(16) acute myeloid leukemia in first complete remission. Hematological Oncology, 2022, 40, 724-733.	1.7	2
66	Low EVI1 expression at diagnosis predicted poor outcomes in pediatric Ph-negative B cell precursor acute lymphoblastic leukemia patients. Pediatric Hematology and Oncology, 2022, 39, 97-107.	0.8	1
67	ATRA Could Correct the Defective S1P-Mediated Cytoskeletal Reorganization in Proplatelet Formation of ITP. Blood, 2019, 134, 218-218.	1.4	1
68	Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: To Allogeneic Stem Cell Transplantation or Not? a Single Center Experience. Blood, 2016, 128, 2308-2308.	1.4	1
69	Leukemia-propagating cells demonstrate distinctive gene expression profiles compared with other cell fractions from patients with de novo Philadelphia chromosome-positive ALL. Annals of Hematology, 2018, 97, 799-811.	1.8	0
70	Imatinib Mesylate Versus Allogeneic HSCT for Patients with Chronic Myelogenous Leukemia In Accelerated Phase: A Single Center Experience In China After a 9-Year Follow-up. Blood, 2010, 116, 2347-2347.	1.4	0
71	Low WT1 Expression At Diagnosis Is a Strong Predictor On Poor Outcome In Patients With t(8;21) Acute Myeloid Leukemia. Blood, 2013, 122, 1346-1346.	1.4	0
72	Prevalence and Prognostic Significance of c-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Comprehensive Large-Scale Study from a Single Chinese Center. Blood, 2014, 124, 1000-1000.	1.4	0

#	Article	IF	CITATIONS
73	Janus Kinase Inhibition By Ruxolitinib Combined with Nilotinib Has Superior Anti-Leukemia Propagating Cells Effect in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2016, 128, 4023-4023.	1.4	0
74	C-KIT- Mutated t(8;21)AML Patients with >3log Reduction of MRD Conferred a Very High Relapse and Need HSCT to Improve Outcome. Blood, 2016, 128, 1620-1620.	1.4	0
75	Prognostic value of RASD1 transcript levels in adult Philadelphia-negative B-cell acute lymphoblastic leukemia. Hematology, 2021, 26, 9-15.	1.5	0
76	Prognostic value of postâ€ŧransplantation Wilms' tumor gene 1 expression in acute myeloid leukaemia subgroup according to different preâ€ŧransplant disease status. International Journal of Laboratory Hematology, 2022, 44, .	1.3	0