List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 495, 282-287.	5.6	124
2	Fabrication of continuous carbon fiber-reinforced aluminum–magnesium alloy composite wires using ultrasonic infiltration method. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1902-1911.	7.6	73
3	Diffusion Bonding of Intermetallic Compound TiAl ISIJ International, 1991, 31, 1260-1266.	1.4	52
4	Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method. Composites Part A: Applied Science and Manufacturing, 2007, 38, 771-778.	7.6	43
5	Cracking in the stir zones of Mg-alloy friction stir spot welds. Journal of Materials Science, 2007, 42, 7657-7666.	3.7	42
6	Analysis of Degradation of Creep Strength in Heat-affected Zone of Weldment of High Cr Heat-resisting Steels Based on Void Observation ISIJ International, 2002, 42, 1578-1584.	1.4	40
7	Effect of grain refiner and grain size on the susceptibility of Al–Mg die casting alloy to cracking during solidification. Journal of Materials Processing Technology, 2009, 209, 210-219.	6.3	37
8	Mechanism of cracking in AZ91 friction stir spot welds. Science and Technology of Welding and Joining, 2007, 12, 208-216.	3.1	33
9	Development of a highly efficient hot-wire laser hybrid process for narrow-gap welding—welding phenomena and their adequate conditions. Welding in the World, Le Soudage Dans Le Monde, 2013, 57, 607-613.	2.5	32
10	Consideration of the adhesion mechanism of Ti alloys using a cemented carbide tool during the cutting process. Journal of Materials Processing Technology, 2002, 127, 251-255.	6.3	31
11	Cracking in dissimilar Mg alloy friction stir spot welds. Science and Technology of Welding and Joining, 2008, 13, 583-592.	3.1	30
12	The effect of welding conditions on solidification cracking susceptibility of type 310S stainless steel during laser welding using an in-situ observation technique. Welding in the World, Le Soudage Dans Le Monde, 2013, 57, 383.	2.5	25
13	Experimental investigation of material flow during friction stir spot welding. Science and Technology of Welding and Joining, 2010, 15, 666-670.	3.1	24
14	Impact properties of NIFS-HEAT-2 (V–4Cr–4Ti) after YAG laser welding and neutron irradiation at 563 K. Journal of Nuclear Materials, 2004, 329-333, 1539-1543.	2.7	21
15	Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting. Journal of Materials Processing Technology, 2006, 173, 330-336.	6.3	21
16	Evaluation of Solidification Cracking Susceptibility for Austenitic Stainless Steel during Laser Trans-Varestraint Test Using Two-dimensional Temperature Measurement. ISIJ International, 2016, 56, 2022-2028.	1.4	21
17	Bead formation and wire temperature distribution during ULTRA-HIGH-SPEED GTA WELDING using pulse-heated hot-wire. Welding in the World, Le Soudage Dans Le Monde, 2011, 55, 12-18.	2.5	19
18	Development of High-efficiency / High-quality Hot-wire Laser Fillet Welding Process. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2011, 29, 62s-65s.	0.5	19

#	Article	IF	CITATIONS
19	Recovery of Hardness, Impact Properties and Microstructure of Neutron-Irradiated Weld Joint of a Fusion Candidate Vanadium Alloy. Materials Transactions, 2005, 46, 498-502.	1.2	18
20	Precipitation and Cr depletion profiles of Inconel 182 during heat treatments and laser surface melting. Journal of Materials Processing Technology, 2009, 209, 416-425.	6.3	18
21	Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5860-5869.	2.2	18
22	Development of Hot-wire Laser Welding Method for Lap Joint of Steel Sheet with Wide Gap. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2011, 29, 58s-61s.	0.5	17
23	Solidification cracking susceptibility of modified 9Cr1Mo steel weld metal during hot-wire laser welding with a narrow gap groove. Welding in the World, Le Soudage Dans Le Monde, 2014, 58, 469-476.	2.5	17
24	Investigation of precipitation behavior in a weld deposit of 11Cr-2W ferritic steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 107-115.	2.2	16
25	Investigation of Evaluation Method for Hot Cracking Susceptibility of 310S Stainless Steel during Laser Welding using Trans-Varestraint Test. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 39s-43s.	0.5	16
26	Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 11-18.	5.6	15
27	Mechanical Properties of Laser Weldment of V-4Cr-4Ti Alloy. Fusion Science and Technology, 2003, 44, 470-474.	1.1	12
28	Modeling of precipitation and Cr depletion profiles of Inconel 600 during heat treatments and LSM procedure. Journal of Alloys and Compounds, 2006, 419, 118-125.	5.5	12
29	Development in manufacturing of carbon fiber reinforced aluminum preform wires using ultrasonic infiltration method. Keikinzoku/Journal of Japan Institute of Light Metals, 2006, 56, 28-33.	0.4	12
30	In-situ Temperature Measurement using a Multi-sensor Camera during Laser Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 93s-97s.	0.5	12
31	Infiltration mechanism of molten aluminum alloys into bundle of carbon fibers using ultrasonic infiltration method. Keikinzoku/Journal of Japan Institute of Light Metals, 2006, 56, 226-232.	0.4	11
32	In-situ Observation of Solidification Cracking of Laser Dissimilar Welded Joints. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 134s-138s.	0.5	11
33	Impact property of low-activation vanadium alloy after laser welding and heavy neutron irradiation. Journal of Nuclear Materials, 2013, 442, S364-S369.	2.7	10
34	Prediction of occurrence of solidification cracking in weld metal. Welding International, 2010, 24, 942-948.	0.7	9
35	Fundamental Study on Adhesion Mechanism of Difficult-to-Machine Materials during Cutting. (1st) Tj ETQq1 1 (the Japan Society for Precision Engineering, 2000, 66, 224-228.	0.784314 0.1	rgBT /Overloo 8
36	Compacting Mechanism in High-Speed Centrifugal Compaction Process. (Part 1). Observation of Slips during Compaction Journal of the Ceramic Society of Japan, 2001, 109, 137-142.	1.3	8

#	Article	IF	CITATIONS
37	Welding Phenomena during Vertical Welding on Thick Steel Plate using Hot-wire Laser Welding Method. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 143s-147s.	0.5	8
38	Effect of magnesium content on tensile strength of carbon-fiber-reinforced aluminum-magnesium alloy composite wires fabricated by ultrasonic infiltration method. Keikinzoku/Journal of Japan Institute of Light Metals, 2006, 56, 105-111.	0.4	7
39	In-situ Temperature Measurement using Monochrome High-speed Sensors during Laser Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 78s-81s.	0.5	7
40	Assessment of cold cracking tests for low transformation temperature martensitic stainless steel multipass welds. Welding in the World, Le Soudage Dans Le Monde, 2015, 59, 521-532.	2.5	7
41	Prediction of Residual Liquid Distribution of Austenitic Stainless Steel during Laser Beam Welding Using Multi-Phase Field Modeling. ISIJ International, 2017, 57, 139-147.	1.4	6
42	Hot-wire Laser Brazing Technology for Steel / Aluminum Alloy Dissimilar Joint. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 155s-159s.	0.5	6
43	Compacting Mechanism of High-Speed Centrifugal Compaction Process. Part 2. Quantitative Analysis of Falling Velocity of Particles and Compacting Velocity Journal of the Ceramic Society of Japan, 2001, 109, 248-253.	1.3	5
44	Liquid Penetration Induced (LPI) Cracking in AZ91 Friction Stir Spot Welds. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2007, 25, 208-214.	0.5	5
45	Effect of microstructure on liquation cracking during AZ91 friction stir spot welding. Science and Technology of Welding and Joining, 2010, 15, 671-675.	3.1	5
46	New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 59-64.	5.6	5
47	Ductility-dip cracking susceptibility in dissimilar weld metals of alloy 690 filler metal and low alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 92-97.	5.6	5
48	Prediction of Solidification Cracking by In-situ Observation and 3D FEM-Analysis. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 139s-143s.	0.5	5
49	Oblique laser irradiation technique for vertical welding of thick steel plates employing hot-wire laser welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 326-331.	0.5	5
50	Study on Solidification Cracking of Laser Dissimilar Welded Joints by using in-Situ Observation and Numerical Simulation. Welding in the World, Le Soudage Dans Le Monde, 2010, 54, R257-R266.	2.5	4
51	Heterogeneous Precipitation and Mechanical Property Change by Heat Treatments for the Laser Weldments of V-4Cr-4Ti Alloy. Plasma and Fusion Research, 2015, 10, 1405092-1405092.	0.7	4
52	Evaluation of Butt Joint Produced by a Hot-Wire CO2 Arc Welding Method. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2021, 39, 96-103.	0.5	4
53	Fabrication Process and Evaluation of the Sintered SiC Fiber Reinforced SiO2-Mullite Composites. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 162-171.	0.4	2
54	Development of Remote Laser Welding Method Using Long Focal-Distance Lens for Automobile Galvannealed Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 60s-63s.	0.5	2

#	Article	IF	CITATIONS
55	Influence of high temperature holding on tensile strength of PAN-based carbon fiber reinforced aluminum–magnesium alloy composites fabricated by ultrasonic infiltration method. Keikinzoku/Journal of Japan Institute of Light Metals, 2009, 59, 241-247.	0.4	2
56	Development of a Heat Source Model for Narrow-gap Hot-wire Laser Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 82s-85s.	0.5	2
57	A Study on the Fatigue Strength of Welded Joints of Duplex Stainless-Clad Steel Plates for Application in Chemical Tankers. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 1WL-3WL.	0.5	2
58	Development of 25%Cr SMAW welding materials – development of high Cr ferritic overlay welding materials for recovery boiler. Welding International, 2018, 32, 321-327.	0.7	2
59	Additive manufacturing phenomena of various wires using a hot-wire and diode laser. Welding in the World, Le Soudage Dans Le Monde, 0, , 1.	2.5	2
60	Development of 25%Cr SMAW Welding Materials. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2016, 34, 175-180.	0.5	1
61	Development of 25%Cr GMAW Welding Materials. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 1-5.	0.5	1
62	Melting by Reflected Laser Beam during Vertical Welding via Hot-Wire Laser Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2019, 37, 208-214.	0.5	1
63	Effect of Carbon Distribution on Copper-Growth of Fe-Cu-C Compacts. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1995, 59, 1165-1171.	0.4	1
64	Strength evaluation of Ni-base alloy overlay welding tubes for the coal-fired boiler furnace. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 129-134.	0.5	1
65	Optimization of Laser-Irradiating Conditions for Vertical Welding on Thick Steel Plate using Hot-Wire Laser-Welding Method. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2019, 37, 187-192.	0.5	1
66	Liquid zinc corrosion of steel welds. Science and Technology of Welding and Joining, 2002, 7, 397-402.	3.1	0
67	Effect of Thermal Residual Stress on Matrix Cracking Strain and Fracture Behavior of the Sintered SiC Fiber Reinforced SiO2-Mullite Composites. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 172-180.	0.4	Ο
68	Neutron-induced 63Ni activity and microscopic observation of copper samples exposed to the Hiroshima atomic bomb. Nuclear Instruments & Methods in Physics Research B, 2013, 302, 1-8.	1.4	0
69	<i>In Situ</i> Observation Method for Quantitative Evaluation of Solidification Phenomena and Solidification Cracks during Welding. Materials Science Forum, 2014, 782, 3-7.	0.3	Ο
70	Sheet gap control by laser preheating before laser welding on lap joint of galvannealed steel sheets and its effect on weldability. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2018, 36, 199-205.	0.5	0
71	Development of Vertical Welding Technology for Thick Steel Plate using Hot-wire Laser Welding Method. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2016, 85, 282-286.	0.1	0
72	Hot Cracking. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2020, 89, 140-147.	0.1	0