
Markus Pfenninger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoperiod is an important seasonal selection factor in <i>Chironomus riparius</i> (Diptera:) Tj ETQq1 1 0.784	314.rgBT 0.7	/Overlock 10
2	Whole genome sequencing and RNA-seq evaluation allowed to detect Cd adaptation footprint in Chironomus riparius. Science of the Total Environment, 2022, 819, 152843.	3.9	6
3	On the use of population genomic time series for environmental monitoring. American Journal of Botany, 2022, 109, 497-499.	0.8	3
4	Spontaneous rate of clonal single nucleotide mutations in Daphnia galeata. PLoS ONE, 2022, 17, e0265632.	1.1	2
5	Polyamide microplastic exposure elicits rapid, strong and genome-wide evolutionary response in the freshwater non-biting midge Chironomus riparius. Chemosphere, 2022, 299, 134452.	4.2	8
6	ModEst: Accurate estimation of genome size from next generation sequencing data. Molecular Ecology Resources, 2022, 22, 1454-1464.	2.2	17
7	Population Genomic Time Series Data of a Natural Population Suggests Adaptive Tracking of Fluctuating Environmental Changes. Integrative and Comparative Biology, 2022, 62, 1812-1826.	0.9	4
8	Measuring mutagenicity in ecotoxicology: A case study of Cd exposure in Chironomus riparius. Environmental Pollution, 2021, 272, 116004.	3.7	13
9	A multigenerational approach can detect early Cd pollution in Chironomus riparius. Chemosphere, 2021, 262, 127815.	4.2	9
10	Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species. Journal of Evolutionary Biology, 2021, 34, 937-952.	0.8	9
11	Genomic divergence landscape in recurrently hybridizing Chironomus sister taxa suggests stable steady state between mutual gene flow and isolation. Evolution Letters, 2021, 5, 86-100.	1.6	5
12	De novo Genome Assembly of the Raccoon Dog (Nyctereutes procyonoides). Frontiers in Genetics, 2021, 12, 658256.	1.1	11
13	Whole-genome re-sequencing data to infer historical demography and speciation processes in land snails: the study of two <i>Candidula</i> sister species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200156.	1.8	8
14	<i>De novo</i> genome assembly of the land snail <i>Candidula unifasciata</i> (Mollusca: Gastropoda). G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	8
15	Genomic basis for drought resistance in European beech forests threatened by climate change. ELife, 2021, 10, .	2.8	33
16	Temperature dependence of spontaneous mutation rates. Genome Research, 2021, 31, 1582-1589.	2.4	31
17	A Chromosome-Level Genome Assembly of the European Beech (Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Frontiers in Genetics, 2021, 12, 691058.	1.1	17
18	Hybridization Dynamics and Extensive Introgression in the <i>Daphnia longispina</i> Species Complex: New Insights from a High-Quality <i>Daphnia galeata</i> Reference Genome. Genome Biology and Evolution, 2021, 13, .	1.1	11

#	Article	IF	CITATIONS
19	Combining environmental DNA and species distribution modeling to evaluate reintroduction success of a freshwater fish. Ecological Applications, 2020, 30, e02034.	1.8	18

A comprehensive phylogeographic study of Arion vulgaris Moquin-Tandon, 1855 (Gastropoda:) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 70

21	Genomic processes underlying rapid adaptation of a natural <i>Chironomus riparius</i> population to unintendedly applied experimental selection pressures. Molecular Ecology, 2020, 29, 536-548.	2.0	29
22	Climate Change Genomics Calls for Standardized Data Reporting. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	26
23	Range-wide patterns of human-mediated hybridisation in European wildcats. Conservation Genetics, 2020, 21, 247-260.	0.8	31
24	Evolutionary genomics can improve prediction of species' responses to climate change. Evolution Letters, 2020, 4, 4-18.	1.6	190
25	A High-Quality Genome Assembly from Short and Long Reads for the Non-biting Midge <i>Chironomus riparius</i> (Diptera). G3: Genes, Genomes, Genetics, 2020, 10, 1151-1157.	0.8	22
26	Hybrid Genome Assembly of a Neotropical Mutualistic Ant. Genome Biology and Evolution, 2019, 11, 2306-2311.	1.1	11
27	Establishing laboratory cultures and performing ecological and evolutionary experiments with the emerging model species Chironomus riparius. Journal of Applied Entomology, 2019, 143, 584-592.	0.8	12
28	An experimental assessment of reproductive isolation and its consequences for seasonal hybridization dynamics. Biological Journal of the Linnean Society, 2019, 126, 327-337.	0.7	4
29	Modelling seasonal dynamics, population stability, and pest control in Aedes japonicus japonicus (Diptera: Culicidae). Parasites and Vectors, 2019, 12, 142.	1.0	16
30	The genomic footprint of climate adaptation in <i>Chironomus riparius</i> . Molecular Ecology, 2018, 27, 1439-1456.	2.0	54
31	First insights into the phylogeny of deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific. Hydrobiologia, 2018, 811, 283-293.	1.0	9
32	Molecular phylogeny of Candidula (Geomitridae) land snails inferred from mitochondrial and nuclear markers reveals the polyphyly of the genus. Molecular Phylogenetics and Evolution, 2018, 118, 357-368.	1.2	13
33	Transcriptomic responses to predator kairomones in embryos of the aquatic snail <i>Radix balthica</i> . Ecology and Evolution, 2018, 8, 11071-11082.	0.8	1
34	Rapid adaptation to high temperatures in <i>Chironomus riparius</i> . Ecology and Evolution, 2018, 8, 12780-12789.	0.8	18
35	Environmental DNA Time Series in Ecology. Trends in Ecology and Evolution, 2018, 33, 945-957.	4.2	152
36	Thermal experiments with the Asian bush mosquito (Aedes japonicus japonicus) (Diptera: Culicidae) and implications for its distribution in Germany. Parasites and Vectors, 2018, 11, 81.	1.0	42

MARKUS PFENNINGER

#	Article	IF	CITATIONS
37	A reference genome of the European beech (Fagus sylvatica L.). GigaScience, 2018, 7, .	3.3	58
38	The evolutionary history of bears is characterized by gene flow across species. Scientific Reports, 2017, 7, 46487.	1.6	176
39	Global patterns of thermal tolerances and vulnerability of endotherms to climate change remain robust irrespective of varying data suitability criteria. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170232.	1.2	5
40	Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evolutionary Biology, 2017, 17, 93.	3.2	39
41	The influence of thermal tolerances on geographical ranges of endotherms. Global Ecology and Biogeography, 2017, 26, 650-668.	2.7	36
42	<i>Chironomus riparius</i> (Diptera) genome sequencing reveals the impact of minisatellite transposable elements on population divergence. Molecular Ecology, 2017, 26, 3256-3275.	2.0	15
43	Combining De Novo Peptide Sequencing Algorithms, A Synergistic Approach to Boost Both Identifications and Confidence in Bottom-up Proteomics. Journal of Proteome Research, 2017, 16, 3209-3218.	1.8	14
44	Direct estimation of the spontaneous mutation rate by short-term mutation accumulation lines in <i>Chironomus riparius</i> . Evolution Letters, 2017, 1, 86-92.	1.6	56
45	DISMS2: A flexible algorithm for direct proteome- wide distance calculation of LC-MS/MS runs. BMC Bioinformatics, 2017, 18, 148.	1.2	15
46	An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca). Genome Biology and Evolution, 2017, 9, 585-592.	1.1	57
47	Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life. BMC Evolutionary Biology, 2016, 16, 164.	3.2	41
48	Support for the evolutionary speed hypothesis from intraspecific population genetic data in the non-biting midge <i>Chironomus riparius</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152413.	1.2	41
49	Phylogenetic analyses of gazelles reveal repeated transitions of key ecological traits and provide novel insights into the origin of the genus Gazella. Molecular Phylogenetics and Evolution, 2016, 98, 1-10.	1.2	13
50	Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions. Molecular Phylogenetics and Evolution, 2016, 97, 43-54.	1.2	25
51	Standardized Laboratory Feeding of LarvalAedes japonicus japonicus(Diptera: Culicidae). Journal of Insect Science, 2015, 15, 144.	0.6	6
52	Unique evolutionary trajectories in repeated adaptation to hydrogen sulphideâ€ŧoxic habitats of a neotropical fish (<i>Poecilia mexicana</i>). Molecular Ecology, 2015, 24, 5446-5459.	2.0	49
53	Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. Journal of Biogeography, 2015, 42, 2187-2196.	1.4	73
54	Positive selection in development and growth rate regulation genes involved in species divergence of the genus Radix. BMC Evolutionary Biology, 2015, 15, 164.	3.2	13

MARKUS PFENNINGER

#	Article	IF	CITATIONS
55	Relocation, high″atitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology, 2015, 24, 235-248.	2.0	125
56	Characterizing a hybrid zone between a cryptic species pair of freshwater snails. Molecular Ecology, 2015, 24, 643-655.	2.0	19
57	Misperceived invasion: the <scp>L</scp> usitanian slug (<i><scp>A</scp>rion lusitanicus</i> auct.) Tj ETQq1 1 0.< <scp>C</scp> entral <scp>E</scp> urope. Evolutionary Applications, 2014, 7, 702-713.	784314 rg 1.5	gBT /Overloc 48
58	Noninvasive genetic assessment of brown bear population structure in Bulgarian mountain regions. Mammalian Biology, 2014, 79, 268-276.	0.8	48
59	Control Region Length Dynamics Potentially Drives Amino Acid Evolution in Tarsier Mitochondrial Genomes. Journal of Molecular Evolution, 2014, 79, 40-51.	0.8	8
60	Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141097.	1.2	217
61	Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment. Nature Communications, 2014, 5, 3873.	5.8	75
62	Utility of island populations in reâ€introduction programmes – relationships between <scp>A</scp> rabian gazelles (<i><scp>G</scp>azella arabica</i>) from the <scp>F</scp> arasan <scp>A</scp> rchipelago and endangered mainland populations. Molecular Ecology, 2014, 23, 1910-1922.	2.0	8
63	Genomic basis of ecological niche divergence among cryptic sister species of non-biting midges. BMC Genomics, 2013, 14, 384.	1.2	25
64	GENETIC DIFFERENTIATION AND SELECTION AGAINST MIGRANTS IN EVOLUTIONARILY REPLICATED EXTREME ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2013, 67, 2647-2661.	1.1	58
65	Evolutionary determinants of population differences in population growth rateÂ×Âhabitat temperature interactions in Chironomus riparius. Oecologia, 2013, 172, 585-594.	0.9	20
66	Phylogenetic and population genetic analyses suggest a potential species boundary between Mountain (Gazella gazella) and Arabian Gazelles (G. arabica) in the Levant. Mammalian Biology, 2013, 78, 383-386.	0.8	19
67	The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 2013, 22, 925-946.	2.0	500
68	Twelve new microsatellite loci for the sulphur molly (Poecilia sulphuraria) and the related Atlantic molly (P. mexicana). Conservation Genetics Resources, 2012, 4, 935-937.	0.4	6
69	Taxonomic assessment of Lumbricidae (Oligochaeta) earthworm genera using DNA barcodes. European Journal of Soil Biology, 2012, 48, 41-47.	1.4	35
70	Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evolutionary Biology, 2012, 12, 224.	3.2	29
71	On the Processes Shaping Small-Scale Population Structure inRadix balthica(Linnaeus 1758). Malacologia, 2012, 55, 219-233.	0.2	12
72	Experimental evidence for niche segregation in a sister species pair of non-biting midges. Hydrobiologia, 2012, 691, 203-212.	1.0	12

MARKUS PFENNINGER

#	Article	IF	CITATIONS
73	Impact of genetic diversity and inbreeding on the life-history of Chironomus midges over consecutive generations. Chemosphere, 2012, 88, 988-993.	4.2	8
74	Alpine Crossroads or Origin of Genetic Diversity? Comparative Phylogeography of Two Sympatric Microgastropod Species. PLoS ONE, 2012, 7, e37089.	1.1	17
75	A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Molecular Ecology Resources, 2011, 11, 255-265.	2.2	52
76	A genetic basis for intraspecific differences in developmental timing?. Evolution & Development, 2011, 13, 542-548.	1.1	22
77	A phylogeographic framework for the conservation of Saharan and Arabian Dorcas gazelles (Artiodactyla: Bovidae). Organisms Diversity and Evolution, 2011, 11, 317-329.	0.7	29
78	Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail radix balthica(Pulmonata, Basommatophora). BMC Evolutionary Biology, 2011, 11, 135.	3.2	56
79	Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix) Tj ETQq1 2 2011, 12, 317.	l 0.784314 1.2	rgBT /Overlo 137
80	Evolution of freshwater crab diversity in the Aegean region (Crustacea: Brachyura: Potamidae). Molecular Phylogenetics and Evolution, 2011, 59, 23-33.	1.2	47
81	Phylogeography of a Land Snail Suggests Trans-Mediterranean Neolithic Transport. PLoS ONE, 2011, 6, e20734.	1.1	23
82	When Indian crabs were not yet Asian - biogeographic evidence for Eocene proximity of India and Southeast Asia. BMC Evolutionary Biology, 2010, 10, 287.	3.2	63
83	Temporal speciation pattern in the western Mediterranean genus Tudorella P. Fischer, 1885 (Gastropoda, Pomatiidae) supports the Tyrrhenian vicariance hypothesis. Molecular Phylogenetics and Evolution, 2010, 54, 427-436.	1.2	48
84	A species delimitation approach in the Trochulus sericeus/hispiduscomplex reveals two cryptic species within a sharp contact zone. BMC Evolutionary Biology, 2009, 9, 171.	3.2	49
85	Disjunct distribution of the Mediterranean freshwater crab Potamon fluviatile—natural expansion or human introduction?. Biological Invasions, 2009, 11, 2209-2221.	1.2	33
86	Rapid genetic erosion in pollutant-exposed experimental chironomid populations. Environmental Pollution, 2009, 157, 881-886.	3.7	66
87	Climateâ€driven range dynamics of the freshwater limpet, <i>Ancylus fluviatilis</i> (Pulmonata,) Tj ETQq1 1 0.7	84314 rgB 1.4	T /Overlock 1
88	Reproductive Isolation and Ecological Niche Partition among Larvae of the Morphologically Cryptic Sister Species Chironomus riparius and C. piger. PLoS ONE, 2008, 3, e2157.	1.1	30
89	Intraspecific range dynamics and niche evolution in Candidula land snail species. Biological Journal of the Linnean Society, 2007, 90, 303-317.	0.7	33
90	Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology, 2007, 16, 1957-1968.	2.0	143

#	Article	IF	CITATIONS
91	Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 2007, 7, 121.	3.2	512
92	Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evolutionary Biology, 2006, 6, 100.	3.2	105
93	Rangewide phylogeography of a terrestrial slug in Europe: evidence for Alpine refugia and rapid colonization after the Pleistocene glaciations. Molecular Ecology, 2005, 14, 1133-1150.	2.0	92
94	INFERENCE OF A RADIATION IN MASTUS (GASTROPODA, PULMONATA, ENIDAE) ON THE ISLAND OF CRETE. Evolution; International Journal of Organic Evolution, 2005, 59, 991-1005.	1.1	23
95	Why do snails have hairs? A Bayesian inference of character evolution. BMC Evolutionary Biology, 2005, 5, 59.	3.2	55
96	INFERENCE OF A RADIATION IN MASTUS (GASTROPODA, PULMONATA, ENIDAE) ON THE ISLAND OF CRETE. Evolution; International Journal of Organic Evolution, 2005, 59, 991.	1.1	59
97	A new Trochulus species from Switzerland (Gastropoda: Pulmonata: Hygromiidae). Archiv Fur Molluskenkunde, 2005, 134, 261-269.	0.1	7
98	Impact of a flood disaster on sediment toxicity in a major river system – the Elbe flood 2002 as a case study. Environmental Pollution, 2005, 134, 87-95.	3.7	44
99	Inference of a radiation in Mastus (Gastropoda, Pulmonata, Enidae) on the island of Crete. Evolution; International Journal of Organic Evolution, 2005, 59, 991-1005.	1.1	11
100	Molecular phylogeny and character evolution in the Western Palaearctic Helicidae s.l. (Gastropoda:) Tj ETQq0 0 0	rgBT /Ov 1.2	erlock 10 Tf 5
101	Evidence for survival of Pleistocene climatic changes in Northern refugia by the land snail Trochoidea geyeri (Soós 1926) (Helicellinae, Stylommatophora). BMC Evolutionary Biology, 2003, 3, 8.	3.2	47
102	Ecological and morphological differentiation among cryptic evolutionary lineages in freshwater limpets of the nominal formâ€group Ancylus fluviatilis (O.F. Müller, 1774). Molecular Ecology, 2003, 12, 2731-2745.	2.0	58
103	Evidence for ecological speciation in the sister species Candidula unifasciata (Poiret, 1801) and C. rugosiuscula (Michaud, 1831) (Helicellinae, Gastropoda). Biological Journal of the Linnean Society, 2003, 79, 611-628.	0.7	32
104	Simulated bottlenecks and loss of rare alleles: implications on the conservation genetics of two gastropod species. Journal for Nature Conservation, 2003, 11, 77-81.	0.8	4
105	PHYLOGEOGRAPHIC HISTORY OF THE LAND SNAIL CANDIDULA UNIFASCIATA (HELICELLINAE,) Tj ETQq1 1 0.7843 International Journal of Organic Evolution, 2002, 56, 1776.	314 rgBT / 1.1	Overlock 10 59
106	Relationship between microspatial population genetic structure and habitat heterogeneity in Pomatias elegans (O.F. M¼ller 1774) (Caenogastropoda, Pomatiasidae). Biological Journal of the Linnean Society, 2002, 76, 565-575.	0.7	33
107	PHYLOGEOGRAPHIC HISTORY OF THE LAND SNAIL CANDIDULA UNIFASCIATA (HELICELLINAE,) TJ ETQq1 1 0.7843	314 rgBT / 1.1	Overlock 10 1,274

International Journal of Organic Evolution, 2002, 56, 1776-1788.

108Phenotypic evolution and hidden speciation in Candidula unifasciata ssp. (Helicellinae, Gastropoda)2.055108inferred by 16S variation and quantitative shell traits. Molecular Ecology, 2001, 10, 2541-2554.2.055

#	Article	IF	CITATIONS
109	Dynamic microsatellites in transcribed regions of gastropod mitochondrial 16S rDNA. Genome, 2001, 44, 163-166.	0.9	2
110	Northern blot analysis of simple repetitive sequence transcription in plants. Electrophoresis, 1996, 17, 1183-1189.	1.3	4