Kaili Jiang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3136390/kaili-jiang-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,639 58 112 220 h-index g-index citations papers 6.35 15,003 10.1 230 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
220	Nanotechnology: spinning continuous carbon nanotube yarns. <i>Nature</i> , 2002 , 419, 801	50.4	926
219	Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays. <i>Advanced Materials</i> , 2006 , 18, 1505-1510	24	512
218	Grain-boundary-dependent CO2 electroreduction activity. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4606-9	16.4	456
217	Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. <i>Nano Letters</i> , 2009 , 9, 3137-41	11.5	441
216	Cross-Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder-Free and High-Capacity Anode Material for Lithium-Ion Batteries. <i>Advanced Materials</i> , 2009 , 21, 2299-2304	24	422
215	Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. <i>Nano Letters</i> , 2008 , 8, 4539-	45 1.5	408
214	Superaligned carbon nanotube arrays, films, and yarns: a road to applications. <i>Advanced Materials</i> , 2011 , 23, 1154-61	24	349
213	Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2010 , 20, 885-891	15.6	328
212	Protein microarrays with carbon nanotubes as multicolor Raman labels. <i>Nature Biotechnology</i> , 2008 , 26, 1285-92	44.5	297
211	Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. <i>Nano Letters</i> , 2009 , 9, 2565-70	11.5	276
210	A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. <i>ACS Central Science</i> , 2016 , 2, 169-74	16.8	272
209	Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. <i>Nano Letters</i> , 2013 , 13, 818-23	11.5	268
208	Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. <i>Nano Letters</i> , 2014 , 14, 4044-9	11.5	244
207	Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. <i>Advanced Materials</i> , 2012 , 24, 2294-8	24	243
206	Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. <i>Nano Letters</i> , 2008 , 8, 700-5	11.5	239
205	Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13540-1	16.4	233
204	Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Liß Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1606663	15.6	228

(2011-2013)

203	Ion Batteries. <i>Advanced Functional Materials</i> , 2013 , 23, 846-853	15.6	223
202	Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. <i>ACS Nano</i> , 2010 , 4, 5827-34	16.7	217
201	All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1706777	15.6	203
200	Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. <i>Nanotechnology</i> , 2010 , 21, 045708	3.4	192
199	Fast Adaptive Thermal Camouflage Based on Flexible VO//Graphene/CNT Thin Films. <i>Nano Letters</i> , 2015 , 15, 8365-70	11.5	180
198	Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2016 , 10, 1300-8	16.7	176
197	Carbon nanotube/epoxy composites fabricated by resin transfer molding. <i>Carbon</i> , 2010 , 48, 260-266	10.4	175
196	Measuring the work function of carbon nanotubes with thermionic method. <i>Nano Letters</i> , 2008 , 8, 647-	5 1 1.5	169
195	Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. <i>Nano Letters</i> , 2010 , 10, 1747-53	11.5	146
194	Cross-Stacked Superaligned Carbon Nanotube Films for Transparent and Stretchable Conductors. <i>Advanced Functional Materials</i> , 2011 , 21, 2721-2728	15.6	142
193	Reversibility of Noble Metal-Catalyzed Aprotic Li-OlBatteries. Nano Letters, 2015, 15, 8084-90	11.5	139
192	Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. <i>ACS Nano</i> , 2015 , 9, 409-18	16.7	133
191	A growth mark method for studying growth mechanism of carbon nanotube arrays. <i>Carbon</i> , 2005 , 43, 2850-2856	10.4	131
190	Multiplexed Five-Color Molecular Imaging of Cancer Cells and Tumor Tissues with Carbon Nanotube Raman Tags in the Near-Infrared. <i>Nano Research</i> , 2010 , 3, 222-233	10	118
189	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with All-Inorganic Charge Contacts. <i>Advanced Functional Materials</i> , 2017 , 27, 1703068	15.6	108
188	Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays. <i>Advanced Materials</i> , 2005 , 17, 56-61	24	108
187	Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5305-5312	13	106
186	Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. <i>Small</i> , 2011 , 7, 732-6	11	95

185	Thermionic emission and work function of multiwalled carbon nanotube yarns. <i>Physical Review B</i> , 2006 , 73,	3.3	95
184	The dependence of graphene Raman D-band on carrier density. <i>Nano Letters</i> , 2013 , 13, 6170-5	11.5	94
183	New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope. <i>Nano Letters</i> , 2014 , 14, 4245-9	11.5	91
182	Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays. <i>Carbon</i> , 2010 , 48, 1876-1879	10.4	88
181	In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. <i>Nano Research</i> , 2011 , 4, 767-779	10	86
180	Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. <i>Journal of Power Sources</i> , 2018 , 389, 169-177	8.9	85
179	Preparation of single-walled carbon nanotube fiber coating for solid-phase microextraction of organochlorine pesticides in lake water and wastewater. <i>Journal of Separation Science</i> , 2007 , 30, 2138-4	13 ^{.4}	85
178	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5569-5577	13	82
177	New-type planar field emission display with superaligned carbon nanotube yarn emitter. <i>Nano Letters</i> , 2012 , 12, 2391-6	11.5	81
176	Flexible and transparent strain sensors based on super-aligned carbon nanotube films. <i>Nanoscale</i> , 2017 , 9, 6716-6723	7.7	80
175	Fast High-Temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display. <i>Advanced Materials</i> , 2009 , 21, 3563-3566	24	77
174	High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. <i>Nanotechnology</i> , 2010 , 21, 345701	3.4	75
173	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983	2.5	74
172	Polarized incandescent light emission from carbon nanotubes. <i>Applied Physics Letters</i> , 2003 , 82, 1763-17	7 <u>65</u>	72
171	Flexible, All-Inorganic Actuators Based on Vanadium Dioxide and Carbon Nanotube Bimorphs. <i>Nano Letters</i> , 2017 , 17, 421-428	11.5	70
170	Tip cooling effect and failure mechanism of field-emitting carbon nanotubes. <i>Nano Letters</i> , 2007 , 7, 64-6	811.5	70
169	Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. <i>Nature Communications</i> , 2013 , 4, 2920	17.4	64
168	Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. <i>Applied Physics Letters</i> , 2006 , 89, 063101	3.4	63

(2014-2016)

167	Binder-free polymer encapsulated sulfur©arbon nanotube composite cathodes for high performance lithium batteries. <i>Carbon</i> , 2016 , 96, 1053-1059	10.4	59
166	Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 248, 265-272	8.9	59
165	Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 249, 463-469	8.9	59
164	MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. <i>Carbon</i> , 2018 , 139, 145-155	10.4	58
163	Self-assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures. <i>Advanced Materials</i> , 2017 , 29, 1603549	24	58
162	Thermoacoustic chips with carbon nanotube thin yarn arrays. <i>Nano Letters</i> , 2013 , 13, 4795-801	11.5	57
161	High frequency response of carbon nanotube thin film speaker in gases. <i>Journal of Applied Physics</i> , 2011 , 110, 084311	2.5	56
160	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 31384-31393	9.5	54
159	Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. <i>Carbon</i> , 2018 , 139, 1136-1143	10.4	53
158	Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. <i>Nano Letters</i> , 2012 , 12, 4095-101	11.5	53
157	Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. <i>Nano Letters</i> , 2008 , 8, 2564-9	11.5	53
156	Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. <i>Physical Review B</i> , 2007 , 76,	3.3	51
155	Vacuum-Breakdown-Induced Needle-Shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications. <i>Nano Letters</i> , 2007 , 7, 3792-3797	11.5	50
154	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. <i>Nanoscale</i> , 2015 , 7, 10178-85	7.7	48
153	Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks. <i>ACS Nano</i> , 2016 , 10, 2193-202	16.7	47
152	Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment. <i>Nano Letters</i> , 2007 , 7, 1622-5	11.5	47
151	Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. Journal of Materials Chemistry A, 2013 , 1, 11121	13	46
150	Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. <i>Nano Research</i> , 2014 , 7, 553-560	10	45

149	Facile growth of vertically-aligned graphene nanosheets via thermal CVD: The experimental and theoretical investigations. <i>Carbon</i> , 2017 , 121, 1-9	10.4	43
148	Strongly Coupled Nanotube Electromechanical Resonators. <i>Nano Letters</i> , 2016 , 16, 5456-62	11.5	43
147	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. <i>Nature Catalysis</i> , 2018 , 1, 326-331	36.5	42
146	Hybrid super-aligned carbon nanotube/carbon black conductive networks: All trategy to improve both electrical conductivity and capacity for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 233, 209-215	8.9	42
145	Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. <i>Nanoscale</i> , 2018 , 10, 15195-15204	7.7	42
144	Amorphous MoS2 Photodetector with Ultra-Broadband Response. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1314-1321	4	39
143	Applications of carbon nanotubes in high performance lithium ion batteries. <i>Frontiers of Physics</i> , 2014 , 9, 351-369	3.7	39
142	Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation. <i>Environmental Science: Nano</i> , 2017 , 4, 2010-2017	7.1	39
141	Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. <i>Nanoscale</i> , 2016 , 8, 617-25	7.7	37
140	Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 20010-20016	3.7	37
139	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. <i>Nanoscale</i> , 2018 , 10, 19972-19978	7.7	37
138	Silicene nanomesh. <i>Scientific Reports</i> , 2015 , 5, 9075	4.9	36
137	CO2 oxidation of carbon nanotubes for lithium-sulfur batteries with improved electrochemical performance. <i>Carbon</i> , 2018 , 132, 370-379	10.4	36
136	Graphene welded carbon nanotube crossbars for biaxial strain sensors. <i>Carbon</i> , 2017 , 123, 786-793	10.4	36
135	LaB6 tip-modified multiwalled carbon nanotube as high quality field emission electron source. <i>Applied Physics Letters</i> , 2006 , 89, 203112	3.4	36
134	Superconductor-Insulator Transitions in Exfoliated BiSrCaCuO Flakes. <i>Nano Letters</i> , 2018 , 18, 5660-566	511.5	35
133	Controlled Termination of the Growth of Vertically Aligned Carbon Nanotube Arrays. <i>Advanced Materials</i> , 2007 , 19, 975-978	24	35
132	A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. <i>Nanotechnology</i> , 2011 , 22, 025502	3.4	34

(2017-2013)

High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. <i>Nano Research</i> , 2013 , 6, 208-215	10	32	
Bifunctional NbS-Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. <i>ACS Nano</i> , 2020 , 14, 175-184	16.7	32	
True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. <i>Nano Research</i> , 2015 , 8, 2721-2732	10	31	
Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. <i>Nano Research</i> , 2018 , 11, 6316-6324	10	31	
Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors. <i>ACS Nano</i> , 2014 , 8, 9597-605	16.7	31	
Periodically striped films produced from super-aligned carbon nanotube arrays. <i>Nanotechnology</i> , 2009 , 20, 335705	3.4	31	
A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 1494-504	1.3	31	
Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. <i>ACS Nano</i> , 2015 , 9, 3753-9	16.7	30	
Sensitivity limits and scaling of bioelectronic graphene transducers. <i>Nano Letters</i> , 2013 , 13, 2902-7	11.5	30	
Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9623-9631	3.8	30	
Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes. <i>Nanoscale</i> , 2012 , 4, 3389-93	7.7	28	
Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. <i>Carbon</i> , 2014 , 69, 444-451	10.4	27	
SWCNT-MoS -SWCNT Vertical Point Heterostructures. <i>Advanced Materials</i> , 2017 , 29, 1604469	24	26	
Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. <i>Nano Letters</i> , 2014 , 14, 3527-33	11.5	26	
Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22756		26	
High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. <i>Nano Research</i> , 2019 , 12, 1105-1113	10	25	
Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic cathodes. <i>Applied Physics Letters</i> , 2008 , 92, 153108	3.4	25	
Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. <i>Nano Letters</i> , 2017 , 17, 915-921	11.5	24	
	nanotube arrays. <i>Nano Research</i> , 2013, 6, 208-215 Bifunctional NbS-Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. <i>ACS Nano</i> , 2020, 14, 175-184 True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. <i>Nano Research</i> , 2015, 8, 2721-2732 Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. <i>Nano Research</i> , 2018, 11, 6316-6324 Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors. <i>ACS Nano</i> , 2014, 8, 9597-605 Periodically striped films produced from super-aligned carbon nanotube arrays. <i>Nanotechnology</i> , 2009, 20, 335705 A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2007, 7, 1494-504 Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. <i>ACS Nano</i> , 2015, 9, 3753-9 Sensitivity limits and scaling of bioelectronic graphene transducers. <i>Nano Letters</i> , 2013, 13, 2902-7 Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. <i>Journal of Physical Chemistry</i> C, 2009, 113, 9623-9631 Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes. <i>Nanoscale</i> , 2012, 4, 3389-93 Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. <i>Carbon</i> , 2014, 69, 444-451 SWCNT-MoS-SWCNT Vertical Point Heterostructures. <i>Advanced Materials</i> , 2017, 29, 1604469 Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. <i>Nano Letters</i> , 2014, 14, 3527-33 Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012, 22, 22756 High areal capacity flexible sulfur cathode based on multi-functionalized	Bifunctional NbS-Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano, 2020, 14, 175-184 107 True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8, 2721-2732 Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Research, 2018, 11, 6316-6324 Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors. ACS Nano, 2014, 8, 9597-605 Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology, 2009, 20, 335705 A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1494-504 Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. ACS Nano, 2015, 9, 3753-9 Sensitivity limits and scaling of bioelectronic graphene transducers. Nano Letters, 2013, 13, 2902-7 Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. Journal of Physical Chemistry, C, 2009, 113, 9623-9631 Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes. Nanoscale, 2012, 4, 3389-93 Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon, 2014, 69, 444-451 SWCNT-MoS-SWCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469 24 Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. Nano Letters, 2014, 14, 3527-33 Highly catalytic cross-stacked spreadinged carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756 High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. Nano Research, 2019, 12, 1105-1113 B	Bifunctional Nb5-Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano, 2020, 14, 175-184 True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8, 2721-2732 Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Research, 2018, 11, 6316-6324 Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors. ACS Nano, 2014, 8, 9597-605 Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology. 2009, 20, 335705 A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1494-504 Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. ACS Nano, 2015, 9, 3753-9 Sensitivity limits and scaling of bioelectronic graphene transducers. Nano Letters, 2013, 13, 2902-7 Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. Journal of Physical Chemistry C, 2009, 113, 9623-9631 Fabrication and processing of high-strength densely packed carbon nanotube yarns without 77 28 Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium in batteries. Carbon, 2014, 69, 444-451 SWCNT-MoS-SWCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469 Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. Nano Letters, 2014, 14, 3527-33 Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756 Barium-functionalized multiwalled carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756 Coherent Phonon Rabi Oscillations with a High

113	Positive and Negative Effects of Carbon Nanotubes on the Hydrogen Sorption Kinetics of Magnesium. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 25282-25290	3.8	24
112	Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. <i>Nanoscale</i> , 2015 , 7, 17693-701	7.7	24
111	In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. <i>Sensors and Actuators B: Chemical</i> , 2013 , 176, 141-148	8.5	24
110	Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes. <i>Nano Letters</i> , 2016 , 16, 4102-9	11.5	23
109	A vacuum sensor using field emitters made by multiwalled carbon nanotube yarns. <i>Vacuum</i> , 2012 , 86, 885-888	3.7	23
108	Breaking single-walled carbon nanotube bundles by Joule heating. <i>Applied Physics Letters</i> , 2008 , 93, 02.	3 3 .148	23
107	Effect of carbon deposits on the reactor wall during the growth of multi-walled carbon nanotube arrays. <i>Carbon</i> , 2007 , 45, 2379-2387	10.4	23
106	Laser direct writing carbon nanotube arrays on transparent substrates. <i>Applied Physics Letters</i> , 2007 , 90, 133108	3.4	23
105	Free-Standing, Binder-Free Titania/Super-Aligned Carbon Nanotube Anodes for Flexible and Fast-Charging Li-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3426-3433	8.3	22
104	Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers. <i>Nano Letters</i> , 2013 , 13, 5556-62	11.5	22
103	Measuring the stress in field-emitting carbon nanotubes. <i>Nanotechnology</i> , 2006 , 17, 1994-1998	3.4	22
102	Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures. <i>ACS Applied Materials & Description</i> , 19, 3236.	9-3237	6 ²¹
101	Growth mechanism of Y-junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition. <i>Carbon</i> , 2008 , 46, 440-444	10.4	21
100	Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. <i>Nanoscale</i> , 2018 , 10, 11158-11164	7.7	21
99	Enhanced performance of graphene transistor with ion-gel top gate. Carbon, 2014, 68, 480-486	10.4	20
98	Fabrication of all-carbon nanotube electronic devices on flexible substrates through CVD and transfer methods. <i>Advanced Materials</i> , 2013 , 25, 6050-6	24	20
97	Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. <i>Composites Science and Technology</i> , 2011 , 72, 85-90	8.6	20
96	Shape-controlled synthesis of silver nanostructures. <i>Nanotechnology</i> , 2005 , 16, 2412-4	3.4	20

95	Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging. <i>Nano Letters</i> , 2016 , 16, 6896-6902	11.5	19	
94	Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. <i>Carbon</i> , 2012 , 50, 5372-5379	10.4	19	
93	Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries. <i>Journal of Power Sources</i> , 2017 , 351, 160-168	8.9	18	
92	Flexible Mid-Infrared Radiation Modulator with Multilayer Graphene Thin Film by Ionic Liquid Gating. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 13538-13544	9.5	18	
91	Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. <i>Carbon</i> , 2018 , 139, 896-905	10.4	18	
90	Low-energy transmission electron diffraction and imaging of large-area graphene. <i>Science Advances</i> , 2017 , 3, e1603231	14.3	18	
89	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. <i>ACS Nano</i> , 2017 , 11, 1257-1263	16.7	17	
88	Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. <i>Carbon</i> , 2016 , 108, 363-371	10.4	17	
87	Effects of carbon nanotubes on the dehydrogenation behavior of magnesium hydride at relatively low temperatures. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16369-16372	13	17	
86	Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2017 , 9, 18945-18955	9.5	16	
85	Infrared micro-detectors with high sensitivity and high response speed using VO2-coated helical carbon nanocoils. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12095-12103	7.1	16	
84	Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries. <i>Nanotechnology</i> , 2016 , 27, 075401	3.4	16	
83	Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. <i>Nanoscale Research Letters</i> , 2014 , 9, 7	5	16	
82	Sub-10 nm Monolayer MoS Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. <i>ACS Applied Materials & Discrete Mask. ACS Applied Materials & Discrete Mask. ACS Applied Materials & Discrete Mask. Mask. ACS Applied Materials & Discrete Mask. Mask. Discrete Mask. ACS Applied Materials & Discrete Mask. D</i>	9.5	15	
81	Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. <i>Nano Research</i> , 2014 , 7, 981	-989	15	
80	Scanning focused laser activation of carbon nanotube cathodes for field emission flat panel displays. <i>Nanotechnology</i> , 2008 , 19, 135703	3.4	15	
79	TiO-Nanocoated Black Phosphorus Electrodes with Improved Electrochemical Performance. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	15	
78	Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6586-6593	11.5	14	

77	Parametric strong mode-coupling in carbon nanotube mechanical resonators. <i>Nanoscale</i> , 2016 , 8, 1480	9-71.3	14
76	Carbon-Nanotube-Confined Vertical Heterostructures with Asymmetric Contacts. <i>Advanced Materials</i> , 2017 , 29, 1702942	24	14
75	Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS2/MoO2/CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14944-14954	13	13
74	In situ fabrication of HfC-decorated carbon nanotube yarns and their field-emission properties. <i>Carbon</i> , 2010 , 48, 531-537	10.4	13
73	Three-Dimensional Carbon Nanotube/Transition-Metal Oxide Sponges as Composite Electrodes with Enhanced Electrochemical Performance. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2997-3005	5.6	13
72	Excitation of Surface Plasmon Resonance in Composite Structures Based on Single-Layer Superaligned Carbon Nanotube Films. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23190-23197	3.8	12
71	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e39	95 0.3	12
70	A cylindrical rod ultrasonic motor with 1 mm diameter and its application in endoscopic OCT. <i>Science Bulletin</i> , 2005 , 50, 826-830		12
69	Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Research, 2015, 8, 303-31	9 10	11
68	Monolayer charge-neutral graphene on platinum with extremely weak electron-phonon coupling. <i>Physical Review B</i> , 2015 , 92,	3.3	11
67	Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets. <i>Nano Letters</i> , 2012 , 12, 2071-6	11.5	11
66	Field emission behavior study of multiwalled carbon nanotube yarn under the influence of adsorbents. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, 736-739	1.3	11
65	Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications. <i>Nanotechnology</i> , 2008 , 19, 475707	3.4	11
64	Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. <i>Nano Research</i> , 2017 , 10, 1804-1818	10	10
63	Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. <i>Nano Research</i> , 2017 , 10, 1896-1902	10	10
62	Mixed-Dimensional Vertical Point pn Junctions. ACS Nano, 2020 , 14, 3181-3189	16.7	10
61	Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4047-4057	13	9
60	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. <i>Small</i> , 2017 , 13, 1700966	11	9

(2021-2019)

59	Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. <i>Nano Letters</i> , 2019 , 19, 6756-6764	11.5	9
58	A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. Journal of Materials Chemistry C, 2020 , 8, 10213-10220	7.1	9
57	Ice-assisted transfer of carbon nanotube arrays. <i>Nano Letters</i> , 2015 , 15, 1843-8	11.5	9
56	A display module implemented by the fast high-temperatue response of carbon nanotube thin yarns. <i>Nano Letters</i> , 2012 , 12, 2548-53	11.5	9
55	Synthesis of Carbon Nanotubes on Suspending Microstructures by Rapid Local Laser Heating. <i>IEEE Sensors Journal</i> , 2011 , 11, 3424-3425	4	9
54	Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. <i>Nano Research</i> , 2020 , 13, 2035-2043	10	8
53	Study of Carbon Nanotubes as Etching Masks and Related Applications in the Surface Modification of GaAs-based Light-Emitting Diodes. <i>Small</i> , 2015 , 11, 4111-6	11	8
52	Optically Induced Phase Change for Magnetoresistance Modulation. <i>Advanced Quantum Technologies</i> , 2020 , 3, 1900104	4.3	8
51	Inverse Hysteresis and Ultrasmall Hysteresis Thin-Film Transistors Fabricated Using Sputtered Dielectrics. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600483	6.4	7
50	Large area nanoscale metal meshes for use as transparent conductive layers. <i>Nanoscale</i> , 2015 , 7, 16508	- † 57	7
49	Laser-Induced Flash-Evaporation Printing CHNHPbI Thin Films for High-Performance Planar Solar Cells. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 26206-26212	9.5	7
48	Perovskite photodetectors prepared by flash evaporation printing. <i>RSC Advances</i> , 2017 , 7, 34795-34800	3.7	7
47	Formation of free-standing carbon nanotube array on super-aligned carbon nanotube film and its field emission properties. <i>Nano Research</i> , 2012 , 5, 421-426	10	7
46	High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. <i>Nano Research</i> , 2019 , 12, 1855-1861	10	6
45	Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2113-2120	6.4	6
44	Imaging of soft material with carbon nanotube tip using near-field scanning microwave microscopy. <i>Ultramicroscopy</i> , 2015 , 148, 75-80	3.1	6
43	Broadband omnidirectional perfect absorber based on carbon nanotube films. <i>Carbon</i> , 2020 , 161, 510-5	1160.4	6
42	Spray coating of a perfect absorber based on carbon nanotube multiscale composites. <i>Carbon</i> , 2021 , 178, 616-624	10.4	6

41	Quantitative characterization of nanoindentation properties of CVI gradient SiC ceramic into CNT arrays. <i>Journal of Alloys and Compounds</i> , 2018 , 762, 196-202	5.7	6
40	Carbon Nanotube Film Gate in Vacuum Electronic Devices. <i>Nano Letters</i> , 2018 , 18, 4691-4696	11.5	6
39	Wafer-scale freestanding vanadium dioxide film. Science Advances, 2021, 7, eabk3438	14.3	6
38	Preparation and infrared response properties of vanadium dioxide nanowire/carbon nanotube composite film. <i>Journal of Materials Science</i> , 2017 , 52, 7224-7231	4.3	5
37	Selective fabrication of quasi-parallel single-walled carbon nanotubes on silicon substrates. <i>Nanotechnology</i> , 2010 , 21, 395602	3.4	5
36	6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. <i>Nature Communications</i> , 2021 , 12, 6868	17.4	5
35	Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes. <i>Physical Review X</i> , 2021 , 11,	9.1	5
34	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. <i>Nano Research</i> , 2018 , 11, 5812-5822	10	5
33	Superionic Modulation of Polymethylmethacrylate-Assisted Suspended Few-Layer Graphene Nanocomposites for High-Performance Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 7600-7606	9.5	4
32	Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. <i>Nano Research</i> , 2015 , 8, 2024-2032	10	4
31	Diameter distribution control of single-walled carbon nanotubes by etching ferritin nanoparticles. <i>Applied Physics Express</i> , 2014 , 7, 055102	2.4	4
30	Laser-Induced High Local Temperature in Carbon Nanotube. <i>Solid State Phenomena</i> , 2007 , 121-123, 331	-336	4
29	Preparation and enhanced photoelectrocatalytic properties of a three-dimensional TiO2-Au porous structure fabricated using superaligned carbon nanotube films. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 31963-31975	6.7	4
28	Efficient Inorganic Cesium Lead Mixed-Halide Perovskite Solar Cells Prepared by Flash-Evaporation Printing. <i>Energy Technology</i> , 2019 , 7, 1800986	3.5	4
27	Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions. <i>Nano Research</i> , 2021 , 14, 2456	10	4
26	Superaligned arrays, films, and yarns of carbon nanotubes: a road toward applications. <i>Scientia Sinica: Physica, Mechanica Et Astronomica</i> , 2011 , 41, 390-403	1.5	3
25	Crystalline multiwall carbon nanotubes and their application as a field emission electron source. <i>Nanotechnology</i> , 2018 , 29, 345601	3.4	3
24	Perovskite Solar Cells: All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells (Adv. Funct. Mater. 11/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870069	15.6	2

(2021-2011)

23	A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials. <i>Nanotechnology</i> , 2011 , 22, 385704	3.4	2
22	Fabrication of Dense Horizontally Aligned Arrays of Single-Wall Carbon Nanotubes from Vertically Aligned Arrays. <i>Applied Physics Express</i> , 2011 , 4, 015101	2.4	2
21	High-throughput methods for evaluating the homogeneity of carbon nanotubes and graphene. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 403001	3	2
20	Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling. <i>Nano Research</i> , 2021 , 14, 1156-1161	10	2
19	Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/Carbon nanotube nanocomposite membranes. <i>Nano Research</i> , 2021 , 14, 100-107	10	2
18	Li-S Batteries: Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance LiB Batteries (Adv. Funct. Mater. 18/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
17	Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. <i>Nano Research</i> , 2020 , 13, 2451-2459	10	1
16	Modeling and optimization of ambipolar graphene transistors in the diffusive limit. <i>Journal of Applied Physics</i> , 2013 , 114, 164508	2.5	1
15	Demonstration of nonvolatile multilevel memory in ambipolar carbon nanotube thin-film transistors. <i>Applied Physics Express</i> , 2015 , 8, 065101	2.4	1
14	Synergistic effect of manganese oxide nanoparticles and graphene nanosheets in composite anodes for lithium ion batteries. <i>Materials Research Express</i> , 2015 , 2, 015503	1.7	1
13	Measurement of polarized nano-material (PNM) for microwave applications 2008,		1
12	Extreme mechanical anisotropy in diamond with preferentially oriented nanotwin bundles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
11	Toward an Intelligent Synthesis: Monitoring and Intervening in the Catalytic Growth of Carbon Nanotubes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17607-17614	16.4	1
10	On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. <i>Science Advances</i> , 2021 , 7,	14.3	1
9	Dielectric-Like Behavior of Graphene in Au Plasmon Resonator. <i>Nanoscale Research Letters</i> , 2016 , 11, 541	5	1
8	Chirality distribution of single-walled carbon nanotubes grown from gold nanoparticles. <i>Carbon</i> , 2022 , 192, 259-264	10.4	1
7	High-temperature epitaxial graphite deposition on macroscopic superaligned carbon nanotube structures by a one-step self-heating method. <i>Carbon</i> , 2021 , 171, 837-844	10.4	0
6	Carbon-nanotube-templated carbon nanofibers with improved mechanical performance. <i>Journal of Applied Physics</i> , 2021 , 129, 044303	2.5	O

5	SEM imaging of insulating specimen through a transparent conducting veil of carbon nanotube. <i>Nano Research</i> ,1	10	O
4	Nanocarbon/Metal Oxide Hybrids for Lithium Ion Batteries 2015 , 87-118		
3	The Influence of Carbon Nanotubes Conductivity and Diameter on Its Thermionic Electron Emission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000069	1.6	
2	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 2000103	1.3	
1	The Influence of Carbon Nanotubes Conductivity and Diameter on Its Thermionic Electron Emission. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2070048	1.6	