Kristen A Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136293/publications.pdf

Version: 2024-02-01

172457 3,576 49 29 citations h-index papers

g-index 49 49 49 4001 docs citations times ranked citing authors all docs

197818

49

#	Article	IF	CITATIONS
1	Structure and Function of Flavivirus NS5 Methyltransferase. Journal of Virology, 2007, 81, 3891-3903.	3.4	324
2	An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20435-20439.	7.1	323
3	GENETIC AND PHENOTYPIC VARIATION OF WEST NILE VIRUS IN NEW YORK, 2000–2003. American Journal of Tropical Medicine and Hygiene, 2004, 71, 493-500.	1.4	219
4	Mosquitoes Inoculate High Doses of West Nile Virus as They Probe and Feed on Live Hosts. PLoS Pathogens, 2007, 3, e132.	4.7	217
5	Infectious cDNA Clone of the Epidemic West Nile Virus from New York City. Journal of Virology, 2002, 76, 5847-5856.	3.4	189
6	Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. Journal of General Virology, 2005, 86, 2175-2183.	2.9	177
7	Functional Analysis of Mosquito-Borne Flavivirus Conserved Sequence Elements within 3′ Untranslated Region of West Nile Virus by Use of a Reporting Replicon That Differentiates between Viral Translation and RNA Replication. Journal of Virology, 2003, 77, 10004-10014.	3.4	165
8	Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. Journal of Virology, 2011, 85, 1517-1527.	3.4	159
9	Genetic and phenotypic variation of West Nile virus in New York, 2000-2003. American Journal of Tropical Medicine and Hygiene, 2004, 71, 493-500.	1.4	141
10	The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology, 2007, 360, 469-476.	2.4	104
11	West Nile Virus Infection in Birds and Mammals. Annals of the New York Academy of Sciences, 2001, 951, 84-93.	3.8	103
12	Keratinocytes Are Cell Targets of West Nile Virus <i>In Vivo</i> . Journal of Virology, 2011, 85, 5197-5201.	3.4	102
13	Persistence of West Nile Virus in the Central Nervous System and Periphery of Mice. PLoS ONE, 2010, 5, e10649.	2.5	97
14	In Vitro Resistance Selection and In Vivo Efficacy of Morpholino Oligomers against West Nile Virus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2470-2482.	3.2	86
15	A Hypervariable Region within the 3′ cis -Acting Element of the Murine Coronavirus Genome Is Nonessential for RNA Synthesis but Affects Pathogenesis. Journal of Virology, 2007, 81, 1274-1287.	3.4	84
16	Exclusion of West Nile Virus Superinfection through RNA Replication. Journal of Virology, 2009, 83, 11765-11776.	3.4	84
17	Virus Detection Protocols for West Nile Virus in Vertebrate and Mosquito Specimens. Journal of Clinical Microbiology, 2003, 41, 3661-3667.	3.9	79
18	Declining Growth Rate of West Nile Virus in North America. Journal of Virology, 2007, 81, 2531-2534.	3.4	73

#	Article	IF	CITATIONS
19	Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology, 2007, 368, 422-430.	2.4	70
20	West Nile Virus Activity in the United States, 2001. Viral Immunology, 2001, 14, 319-338.	1.3	66
21	Mice Susceptible to SARS Coronavirus. Emerging Infectious Diseases, 2004, 10, 1293-1296.	4.3	59
22	Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. ELife, 2017, 6, .	6.0	57
23	Induction of Sterilizing Immunity against West Nile Virus (WNV), by Immunization with WNVâ€Like Particles Produced in Insect Cells. Journal of Infectious Diseases, 2004, 190, 2104-2108.	4.0	51
24	Molecular Epidemiology of Eastern Equine Encephalitis Virus, New York. Emerging Infectious Diseases, 2008, 14, 454-460.	4.3	51
25	West Nile virus in the western hemisphere. Current Opinion in Infectious Diseases, 2001, 14, 519-525.	3.1	43
26	Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Neglected Tropical Diseases, 2018, 12, e0006880.	3.0	42
27	Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose. American Journal of Tropical Medicine and Hygiene, 2006, 75, 337-45.	1.4	42
28	WEST NILE VIRUS SURVEILLANCE IN MOSQUITOES IN NEW YORK STATE, 2000–2004. Journal of the American Mosquito Control Association, 2006, 22, 264-271.	0.7	39
29	Parameters of Mosquito-Enhanced West Nile Virus Infection. Journal of Virology, 2016, 90, 292-299.	3.4	34
30	An Attenuating Mutation in nsP1 of the Sindbis-Group Virus S.A.AR86 Accelerates Nonstructural Protein Processing and Up-Regulates Viral 26S RNA Synthesis. Journal of Virology, 2003, 77, 1149-1156.	3.4	30
31	A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses. MSystems, 2016, 1, .	3.8	28
32	Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology, 2016, 496, 186-193.	2.4	23
33	A deep insight into the male and female sialotranscriptome of adult Culex tarsalis mosquitoes. Insect Biochemistry and Molecular Biology, 2018, 95, 1-9.	2.7	23
34	Identification of Dengue Virus in Respiratory Specimens from a Patient Who Had Recently Traveled from a Region Where Dengue Virus Infection Is Endemic. Journal of Clinical Microbiology, 2007, 45, 1523-1527.	3.9	22
35	Nonconsensus West Nile Virus Genomes Arising during Mosquito Infection Suppress Pathogenesis and Modulate Virus Fitness <i>In Vivo</i> . Journal of Virology, 2011, 85, 12605-12613.	3.4	21
36	Genomic, Recombinational and Phylogenetic Characterization of Global Feline Herpesvirus 1 Isolates. Virology, 2018, 518, 385-397.	2.4	21

#	Article	IF	CITATIONS
37	A duplex real-time reverse transcriptase polymerase chain reaction assay for the detection of St. Louis encephalitis and eastern equine encephalitis viruses. Diagnostic Microbiology and Infectious Disease, 2008, 62, 272-279.	1.8	20
38	West Nile virus—an old virus learning new tricks?. Journal of NeuroVirology, 2005, 11, 469-475.	2.1	18
39	Viral pathogenesis in mice is similar for West Nile virus derived from mosquito and mammalian cells. Virology, 2010, 400, 93-103.	2.4	18
40	A duplex real-time reverse transcriptase polymerase chain reaction assay for the detection of California serogroup and Cache Valley viruses. Diagnostic Microbiology and Infectious Disease, 2009, 65, 150-157.	1.8	15
41	A Thiopurine Drug Inhibits West Nile Virus Production in Cell Culture, but Not in Mice. PLoS ONE, 2011, 6, e26697.	2.5	15
42	Bluetongue virus serotype 17 sequence variation associated with neutralization. DNA Sequence, 2008, 19, 237-240.	0.7	11
43	Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice. PLoS Neglected Tropical Diseases, 2017, 11, e0005394.	3.0	10
44	SARS Coronaviruses and Highly Pathogenic Influenza Viruses: Safety and Occupational Health for Laboratory Workers. Emerging Infectious Diseases, 2005, 11, e3-e3.	4.3	6
45	A Complex Neutralization Domain of Bluetongue Virus Serotype 17 Defines a Virulence-Associated Marker. Viral Immunology, 1996, 9, 97-106.	1.3	5
46	Sequence and Cognitive Analyses of Two Virulence-Associated Markers of Bluetongue Virus Serotype 17. Intervirology, 1997, 40, 226-231.	2.8	5
47	West Nile Virus Laboratory Surveillance Program. Annals of the New York Academy of Sciences, 2001, 951, 351-353.	3.8	2
48	Whole-Genome Sequences of Zika Virus FLR Strains after Passage in Vero or C6/36 Cells. Genome Announcements, 2018, 6, .	0.8	2
49	An analysis of co-circulating serotypes for bluetongue-17 virulence markers. Microbial Pathogenesis, 1995, 18, 337-344.	2.9	1