Ana M Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/313617/publications.pdf

Version: 2024-02-01

1040056 1372567 12 724 9 10 citations h-index g-index papers 12 12 12 1617 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine. Stem Cell Reviews and Reports, 2014, 10, 177-190.	5.6	53
2	Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 635-643.	5.4	306
3	In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 2014, 29, 137-151.	2.1	79
4	Biomimetic Strategies Incorporating Enzymes into CaP Coatings Mimicking the In Vivo Environment. Methods in Molecular Biology, 2013, 1202, 111-119.	0.9	O
5	Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 599-612.	4.0	17
6	Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(εâ€caprolactone) fiber meshes. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1061-1069.	4.0	7
7	Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade. Journal of Materials Chemistry, 2010, 20, 1638-1645.	6.7	72
8	The Role of Lipase and \hat{I} ±-Amylase in the Degradation of Starch/Poly(\hat{E} -Caprolactone) Fiber Meshes and the Osteogenic Differentiation of Cultured Marrow Stromal Cells. Tissue Engineering - Part A, 2009, 15, 295-305.	3.1	58
9	Natural Stimulus Responsive Scaffolds/Cells for Bone Tissue Engineering: Influence of Lysozyme upon Scaffold Degradation and Osteogenic Differentiation of Cultured Marrow Stromal Cells Induced by CaP Coatings. Tissue Engineering - Part A, 2009, 15, 1953-1963.	3.1	37
10	Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: A novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation. Acta Biomaterialia, 2009, 5, 3328-3336.	8.3	30
11	Toward Osteogenic Differentiation of Marrow Stromal Cells and In Vitro Production of Mineralized Extracellular Matrix onto Natural Scaffolds. , 2009, , 263-281.		2
12	Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomaterialia, 2008, 4, 1637-1645.	8.3	63