Nathalie Tufenkji

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3135823/nathalie-tufenkji-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

148 10,732 50 101 h-index g-index citations papers 164 8.5 7.06 12,953 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
148	Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing?. <i>Journal of Hazardous Materials</i> , 2022 , 423, 126955	12.8	12
147	Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish <i>Frontiers in Pharmacology</i> , 2022 , 13, 822111	5.6	О
146	From freshwaters to bivalves: Microplastic distribution along the Saint-Lawrence river-to-sea continuum <i>Journal of Hazardous Materials</i> , 2022 , 435, 128977	12.8	Ο
145	Single-Particle Resolution Fluorescence Microscopy of Nanoplastics <i>Environmental Science & Environmental Science & Technology</i> , 2022 , 56, 6426-6435	10.3	3
144	Sustainable iron-grafted cellulose fibers enable coagulant recycling and improve contaminant removal in water treatment. <i>Chemical Engineering Journal</i> , 2021 , 430, 132927	14.7	1
143	Nanoplastics are neither microplastics nor engineered nanoparticles. <i>Nature Nanotechnology</i> , 2021 , 16, 501-507	28.7	89
142	Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. <i>Water Research</i> , 2021 , 189, 116533	12.5	18
141	Green synthesis of carbon dots and their applications RSC Advances, 2021, 11, 25354-25363	3.7	21
140	Polystyrene micro- and nanoplastics affect locomotion and daily activity of Drosophila melanogaster. <i>Environmental Science: Nano</i> , 2021 , 8, 110-121	7.1	9
139	Polymer-Free Emulsion-Templated Graphene-Based Sponges for Contaminant Removal. <i>ACS Applied Materials & District </i>	9.5	5
138	Primary and Secondary Plastic Particles Exhibit Limited Acute Toxicity but Chronic Effects on. <i>Environmental Science & Environmental </i>	10.3	44
137	Hydrophilic Mechano-Bactericidal Nanopillars Require External Forces to Rapidly Kill Bacteria. <i>Nano Letters</i> , 2020 , 20, 5720-5727	11.5	22
136	Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	78
135	Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5566-5575	8.3	22
134	Reply to the 'Comment on "Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants" by J. Ma, Y. Xiong and F. Yu, Nanoscale, 2019, 11, DOI: 10.1039/C8NR08780F. <i>Nanoscale</i> , 2020, 12, 9899-9901	7.7	1
133	Effect of freeze/thaw on aggregation and transport of nano-TiO2 in saturated porous media. <i>Environmental Science: Nano</i> , 2020 , 7, 1781-1793	7.1	8
132	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23

(2019-2020)

131	Release of TiO2 nanoparticles from painted surfaces in cold climates: characterization using a high sensitivity single-particle ICP-MS. <i>Environmental Science: Nano</i> , 2020 , 7, 139-148	7.1	19
130	Response to Comment on "Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea". <i>Environmental Science & Environmental Science</i>	10.3	3
129	Biofilm formation by marine bacteria is impacted by concentration and surface functionalization of polystyrene nanoparticles in a species-specific manner. <i>Environmental Microbiology Reports</i> , 2020 , 12, 203-213	3.7	20
128	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. <i>Nature Food</i> , 2020 , 1, 416-425	14.4	90
127	Single- and Multi-Element Quantification and Characterization of TiO2 Nanoparticles Released From Outdoor Stains and Paints. <i>Frontiers in Environmental Science</i> , 2020 , 8,	4.8	19
126	Highly Absorbent Antibacterial and Biofilm-Disrupting Hydrogels from Cellulose for Wound Dressing Applications. <i>ACS Applied Materials & Dressing Applications</i> . <i>ACS Applied Materials & Dressing Applications</i> .	9.5	23
125	Graphene oxide sponge as adsorbent for organic contaminants: comparison with granular activated carbon and influence of water chemistry. <i>Environmental Science: Nano</i> , 2020 , 7, 2669-2680	7.1	9
124	Engineering Polymer Forest on Membranes: Tuning Density, Thickness, and Architecture for Biofouling Control. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4592-4603	4.3	3
123	Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental	10.3	276
122	Microfluidic Shear Assay to Distinguish between Bacterial Adhesion and Attachment Strength on Stiffness-Tunable Silicone Substrates. <i>Langmuir</i> , 2019 , 35, 8840-8849	4	12
121	Nano-enabled strategies to enhance crop nutrition and protection. <i>Nature Nanotechnology</i> , 2019 , 14, 532-540	28.7	284
120	Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. <i>Advanced Science</i> , 2019 , 6, 1802333	13.6	21
119	Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples. <i>Accounts of Chemical Research</i> , 2019 , 52, 858-866	24.3	222
118	Self-Assembly of Ultralarge Graphene Oxide Nanosheets and Alginate into Layered Nanocomposites for Robust Packaging Materials. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1431-1444	5.6	7
117	Comparing TiO2 nanoparticle formulations: stability and photoreactivity are key factors in acute toxicity to Daphnia magna. <i>Environmental Science: Nano</i> , 2019 , 6, 2532-2543	7.1	13
116	Antimicrobial Hierarchically Porous Graphene Oxide Sponges for Water Treatment <i>ACS Applied Bio Materials</i> , 2019 , 2, 1578-1590	4.1	17
115	Artificial turf infill associated with systematic toxicity in an amniote vertebrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25156-25161	11.5	6
114	Development and characterization of silver-doped sol-gel-derived borate glasses with anti-bacterial activity. <i>Journal of Non-Crystalline Solids</i> , 2019 , 505, 438-446	3.9	19

113	Environmental performance of graphene-based 3D macrostructures. <i>Nature Nanotechnology</i> , 2019 , 14, 107-119	28.7	203
112	Toxicity Assessments of Micro- and Nanoplastics Can Be Confounded by Preservatives in Commercial Formulations. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 21-25	11	56
111	Bacteriophage-based strategies for biofouling control in ultrafiltration: In situ biofouling mitigation, biocidal additives and biofilm cleanser. <i>Journal of Colloid and Interface Science</i> , 2018 , 523, 254-265	9.3	28
110	Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. <i>Environmental Science & Environmental Science &</i>	10.3	114
109	Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. <i>Advances in Colloid and Interface Science</i> , 2018 , 252, 55-68	14.3	68
108	Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. <i>Environmental Science & Environmental Science & Environm</i>	10.3	834
107	Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. <i>Nanoscale</i> , 2018 , 10, 7171-7184	7.7	58
106	QCM-D and NanoTweezer measurements to characterize the effect of soil cellulase on the deposition of PEG-coated TiO2 nanoparticles in model subsurface environments. <i>Environmental Science: Nano</i> , 2018 , 5, 2172-2183	7.1	5
105	Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. <i>Environmental Science & Environmental Science & Envi</i>	10.3	44
104	Exposure to Freeze-Thaw Conditions Increases Virulence of Pseudomonas aeruginosa to Drosophila melanogaster. <i>Environmental Science & Environmental Sc</i>	10.3	4
103	Natural freeze-thaw cycles may increase the risk associated with contamination in surface and groundwater environments. <i>Water Research X</i> , 2018 , 1, 100005	8.1	7
102	Anodized Aluminum with Nanoholes Impregnated with Quaternary Ammonium Compounds Can Kill Pathogenic Bacteria within Seconds of Contact. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 4120	7-4 ⁴ 721	4 ⁹
101	Evaluating the Cell Membrane Penetration Potential of Lipid-Soluble Compounds Using Supported Phospholipid Bilayers. <i>Analytical Chemistry</i> , 2018 , 90, 11174-11178	7.8	3
100	Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 33827-33838	9.5	63
99	Overcoming Interfacial Scaling Using Engineered Nanocelluloses: A QCM-D Study. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 34553-34560	9.5	4
98	Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption <i>ACS Applied Bio Materials</i> , 2018 , 1, 627-635	4.1	20
97	Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. <i>Environmental Science: Nano</i> , 2017 , 4, 907-918	7.1	26
96	An improved experimental methodology to evaluate the effectiveness of protective gloves against nanoparticles in suspension. <i>Journal of Occupational and Environmental Hygiene</i> , 2017 , 14, D95-D101	2.9	3

(2016-2017)

95	Role of Cell Appendages in Initial Attachment and Stability of E. coli on Silica Monitored by Nondestructive TIRF Microscopy. <i>Langmuir</i> , 2017 , 33, 4066-4075	4	8
94	Chlamydomonas reinhardtii displays aversive swimming response to silver nanoparticles. <i>Environmental Science: Nano</i> , 2017 , 4, 1328-1338	7.1	6
93	Transformations of silver nanoparticles in wastewater effluents: links to Ag bioavailability. <i>Environmental Science: Nano</i> , 2017 , 4, 1339-1349	7.1	46
92	Are There Nanoplastics in Your Personal Care Products?. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 280-285	11	262
91	Assessing the transport potential of polymeric nanocapsules developed for crop protection. <i>Water Research</i> , 2017 , 111, 10-17	12.5	40
90	Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes. <i>Water Research</i> , 2017 , 126, 299-307	12.5	49
89	Microfluidics in microbiology: putting a magnifying glass on microbes. <i>Integrative Biology (United Kingdom)</i> , 2016 , 8, 914-917	3.7	7
88	One-pot green synthesis of anisotropic silver nanoparticles. <i>Environmental Science: Nano</i> , 2016 , 3, 1259	-1 /2. 64	16
87	Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. <i>Scientific Reports</i> , 2016 , 6, 30169	4.9	62
86	Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. <i>Water Research</i> , 2016 , 92, 113-20	12.5	45
85	In Situ Silver Decoration on Graphene Oxide-Treated Thin Film Composite Forward Osmosis Membranes: Biocidal Properties and Regeneration Potential. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 13-18	11	72
84	Effects of Rhamnolipid and Carboxymethylcellulose Coatings on Reactivity of Palladium-Doped Nanoscale Zerovalent Iron Particles. <i>Environmental Science & Environmental Scienc</i>	10.3	38
83	Interaction between palladium-doped zerovalent iron nanoparticles and biofilm in granular porous media: characterization, transport and viability. <i>Environmental Science: Nano</i> , 2016 , 3, 127-137	7.1	11
82	Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring. <i>Frontiers in Chemistry</i> , 2016 , 4, 46	5	28
81	Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring. <i>ACS Applied Materials & Dissipation Monitoring</i> . <i>ACS Applied Materials & Dissipation Monitoring</i> . <i>ACS Applied Materials & Dissipation Monitoring</i> .	9.5	23
80	Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles. <i>ACS Applied Materials & Development and Application to Their Materials & Development and Application to Their Interaction with Nanoparticles. ACS Applied Materials & Development and Application to Their Interaction with Nanoparticles. <i>ACS Applied Materials & Development and Application to Their Interaction with Nanoparticles and Nanoparticles a</i></i>	9.5	25
79	Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320. <i>Canadian Journal of Microbiology</i> , 2016 , 62, 464-74	3.2	10
78	Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for[biofouling mitigation. <i>Water Research</i> , 2016 , 99, 188-199	12.5	85

77	Cellulose nanocrystals with tunable surface charge for nanomedicine. <i>Nanoscale</i> , 2015 , 7, 16647-57	7.7	68
76	Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 3782-92	4.8	43
75	QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 136, 928-34	6	25
74	Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. <i>Water Research</i> , 2015 , 68, 354-63	12.5	37
73	Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on Chromobacterium violaceum CV026 growth, motility, and biofilm formation. <i>Canadian Journal of Microbiology</i> , 2015 , 61, 487-94	3.2	7
72	Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw. <i>Water Research</i> , 2014 , 58, 239-47	12.5	18
71	Investigating electrochemical removal of bacterial biofilms from stainless steel substrates. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 117, 152-7	6	27
70	The road to nowhere: equilibrium partition coefficients for nanoparticles. <i>Environmental Science:</i> Nano, 2014 , 1, 317-323	7.1	116
69	Direct detection of the gel-fluid phase transition of a single supported phospholipid bilayer using quartz crystal microbalance with dissipation monitoring. <i>Analytical Chemistry</i> , 2014 , 86, 8017-20	7.8	22
68	Evaluating the binding of selected biomolecules to cranberry derived proanthocyanidins using the quartz crystal microbalance. <i>Biomacromolecules</i> , 2014 , 15, 1375-81	6.9	8
67	Effects of environmental and clinical interferents on the host capture efficiency of immobilized bacteriophages. <i>Langmuir</i> , 2014 , 30, 3184-90	4	17
66	Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 2715-23	10.3	55
65	Going viral: designing bioactive surfaces with bacteriophage. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 124, 2-16	6	48
64	Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. <i>PLoS ONE</i> , 2014 , 9, e112093	3.7	31
63	Interpreting Deposition Behavior of Polydisperse Surface-Modified Nanoparticles Using QCM-D and Sand-Packed Columns. <i>Environmental Engineering Science</i> , 2014 , 31, 326-337	2	15
62	Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. <i>Water Research</i> , 2014 , 50, 80-9	12.5	94
61	Inhibition of bacterial motility and spreading via release of cranberry derived materials from silicone substrates. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 110, 275-80	6	9
60	Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. <i>ACS Nano</i> , 2013 , 7, 7833-43	16.7	7 ²

(2012-2013)

59	Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating. <i>Environmental Science & Environmental Sci</i>	10.3	43
58	Cranberry impairs selected behaviors essential for virulence in Proteus mirabilis HI4320. <i>Canadian Journal of Microbiology</i> , 2013 , 59, 430-6	3.2	15
57	Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters. <i>Water Research</i> , 2013 , 47, 5889-900	12.5	36
56	Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. <i>Environmental Science & Description (Science & D</i>	10.3	74
55	Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 5729-37	10.3	20
54	Formation of biofilms under phage predation: considerations concerning a biofilm increase. <i>Biofouling</i> , 2013 , 29, 457-68	3.3	61
53	Role of cold climate and freeze-thaw on the survival, transport, and virulence of Yersinia enterocolitica. <i>Environmental Science & Environmental & En</i>	10.3	17
52	Impact of Media Aging on the Removal of Cryptosporidium in Granular Media Filters. <i>Journal of Environmental Engineering, ASCE</i> , 2013 , 139, 603-611	2	4
51	Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 6110-6	4.8	47
50	Impact of kaolinite clay particles on the filtration of Cryptosporidium-sized microspheres. <i>Water Science and Technology: Water Supply</i> , 2013 , 13, 1583-1592	1.4	2
49	Pomegranate materials inhibit flagellin gene expression and flagellar-propelled motility of uropathogenic Escherichia coli strain CFT073. <i>FEMS Microbiology Letters</i> , 2012 , 334, 87-94	2.9	17
48	Preparation and Thermo-Mechanical Characterization of Chitosan Loaded Methylcellulose-Based Biodegradable Films: Effects of Gamma Radiation. <i>Journal of Polymers and the Environment</i> , 2012 , 20, 43-52	4.5	14
47	Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. <i>Environmental Science & Environmental Science & Environ</i>	10.3	76
46	Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. <i>Water Research</i> , 2012 , 46, 1273-85	12.5	89
45	Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. <i>Water Research</i> , 2012 , 46, 1735-44	12.5	115
44	Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. <i>Biofouling</i> , 2012 , 28, 1063-76	3.3	39
43	Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 6942-9	10.3	76
42	Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 91, 198-204	6	41

41	Method for the direct observation and quantification of survival of bacteria attached to negatively or positively charged surfaces in an aqueous medium. <i>Environmental Science & Environmental Scienc</i>	10.3	37
40	Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. <i>Langmuir</i> , 2011 , 27, 5472-80	4	54
39	Induction of a state of iron limitation in uropathogenic Escherichia coli CFT073 by cranberry-derived proanthocyanidins as revealed by microarray analysis. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 1532-5	4.8	15
38	Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 6852-7	4.8	69
37	Fate and Transport of Microbial Contaminants in Groundwater 2011 , 715-726		12
36	The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 3061-7	4.8	163
35	Perturbation of host cell cytoskeleton by cranberry proanthocyanidins and their effect on enteric infections. <i>PLoS ONE</i> , 2011 , 6, e27267	3.7	16
34	Investigation of Laboratory-Scale and Pilot-Scale Attached Growth Ammonia Removal Kinetics at Cold Temperature and Low Influent Carbon. <i>Water Quality Research Journal of Canada</i> , 2010 , 45, 427-43	86 ^{.7}	17
33	Mitigation of Urban Stormwater and Polluted River Water Impacts on Water Quality with Riverbank Filtration 2010 , 165-198		
32	Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules. <i>Langmuir</i> , 2010 , 26, 12832-40	4	80
31	Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. <i>Environmental Science & Environmental Science & Environ</i>	10.3	880
30	Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration. <i>Environmental Science & Environmental Science & Envir</i>	10.3	14
29	Cranberry derived proanthocyanidins can prevent pathogen invasion of kidney epithelial cells. <i>Food Research International</i> , 2010 , 43, 922-924	7	14
28	Transport of selected bacterial pathogens in agricultural soil and quartz sand. <i>Water Research</i> , 2010 , 44, 1182-92	12.5	63
27	Optimal preparation and purification of PRD1-like bacteriophages for use in environmental fate and transport studies. <i>Water Research</i> , 2010 , 44, 1114-25	12.5	24
26	A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets. <i>Journal of Colloid and Interface Science</i> , 2010 , 344, 492-6	9.3	37
25	A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2137-42	11.8	77
24	Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. <i>Environmental Science & Environmental Science & Environ</i>	.8 ^{120.3}	76

(2004-2009)

23	Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents. <i>Water Research</i> , 2009 , 43, 2631-8	12.5	32
22	Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. <i>Environmental Science & Environmental Science & Environment & Envi</i>	10.3	447
21	Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 1282-6	10.3	377
20	Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. <i>Langmuir</i> , 2009 , 25, 6062-9	4	94
19	Role of oxygen tension on the transport and retention of two pathogenic bacteria in saturated porous media. <i>Environmental Science & Environmental Sci</i>	10.3	13
18	Cranberry derived proanthocyanidins reduce bacterial adhesion to selected biomaterials. <i>Langmuir</i> , 2008 , 24, 10273-81	4	52
17	Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. <i>Journal of Colloid and Interface Science</i> , 2008 , 321, 74-83	9.3	214
16	Relevance of nontoxigenic strains as surrogates for Escherichia coli O157:H7 in groundwater contamination potential: role of temperature and cell acclimation time. <i>Environmental Science & Environmental Science</i>	10.3	44
15	Student Expectations from an Environmental Professional Society. <i>Environmental Engineering Science</i> , 2007 , 24, 1201-1217	2	
14	Modeling microbial transport in porous media: Traditional approaches and recent developments. <i>Advances in Water Resources</i> , 2007 , 30, 1455-1469	4.7	227
13	Colloid and Microbe Migration in Granular Environments: A Discussion of Modelling Methods 2007 , 119	-142	22
12	Application of a dual deposition mode model to evaluate transport of Escherichia coli D21 in porous media. <i>Water Resources Research</i> , 2006 , 42,	5.4	24
11	Multi-scale Cryptosporidium/sand interactions in water treatment. Water Research, 2006, 40, 3315-31	12.5	52
10	Reply to Comment on Breakdown of Colloid Filtration Theory: Role of the Secondary Energy Minimum and Surface Charge Heterogeneities. <i>Langmuir</i> , 2005 , 21, 10896-10897	4	9
9	Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition. <i>Environmental Science & Environmental Science & </i>	10.3	109
8	Response to Comment on Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media (Environmental Science & Comp.); Technology, 2005, 39, 5496-5497	10.3	2
7	Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. <i>Langmuir</i> , 2005 , 21, 841-52	4	368
6	Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. <i>Langmuir</i> , 2004 , 20, 10818-28	4	313

5	Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. <i>Environmental Science & Environmental Science & Envi</i>	10.3	830
4	Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. <i>Environmental Science & Environmental Science</i>	10.3	204
3	Interpreting deposition patterns of microbial particles in laboratory-scale column experiments. <i>Environmental Science & Environmental Science & Envir</i>	10.3	144
2	The promise of bank filtration. <i>Environmental Science & Environmental Science</i>	10.3	197
1	Silver-doped sol-gel borate glasses: Dose-dependent effect on Pseudomonas aeruginosa biofilms and keratinocyte function. <i>Journal of the American Ceramic Society</i> ,	3.8	2