## William G Buttlar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3135187/publications.pdf Version: 2024-02-01



WILLIAM C BUTTLAD

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Investigation of recycled asphalt mixtures in Missouri: laboratory, field, and ILLI-TC modelling. Road<br>Materials and Pavement Design, 2022, 23, 1345-1369.                                                           | 2.0 | 6         |
| 2  | Investigation of cracking mechanisms in rubber-modified asphalt through fracture testing of mastic specimens. Road Materials and Pavement Design, 2022, 23, 1544-1563.                                                  | 2.0 | 18        |
| 3  | Can crumb rubber modifier effectively replace the use of polymer- modified bitumen in asphalt mixture?. Sustainable and Resilient Infrastructure, 2022, 7, 515-530.                                                     | 1.7 | 5         |
| 4  | Demonstration Project for Ground Tire Rubber and Post-Consumer Recycled Plastic-Modified Asphalt<br>Mixtures. Transportation Research Record, 2022, 2676, 468-482.                                                      | 1.0 | 3         |
| 5  | Development of a balanced cracking index for asphalt mixtures tested in semi-circular bending with<br>load-LLD measurements. Measurement: Journal of the International Measurement Confederation, 2021,<br>173, 108658. | 2.5 | 30        |
| 6  | Developing a prediction model for rutting depth of asphalt mixtures using gene expression programming. Construction and Building Materials, 2021, 267, 120543.                                                          | 3.2 | 31        |
| 7  | A deep learning approach to predict Hamburg rutting curve. Road Materials and Pavement Design, 2021, 22, 2159-2180.                                                                                                     | 2.0 | 11        |
| 8  | Laboratory and Field Evaluation of Pre-Treated Dry-Process Rubber-Modified Asphalt Binders and Dense-Graded Mixtures. Transportation Research Record, 2021, 2675, 381-394.                                              | 1.0 | 15        |
| 9  | Characterization of viscoelastic properties of asphalt mixture at low temperatures using DC(T) creep test. Construction and Building Materials, 2021, 298, 123731.                                                      | 3.2 | 5         |
| 10 | Performance grade of asphalt mixtures based on mixture performance test thresholds. Construction and Building Materials, 2021, 302, 124357.                                                                             | 3.2 | 1         |
| 11 | Three-dimensional analytical model for exploration of the block cracking phenomenon in asphalt pavements. Road Materials and Pavement Design, 2020, 21, 985-1005.                                                       | 2.0 | 4         |
| 12 | Recycled asphalt shingle modified asphalt mixture design and performance evaluation. Journal of<br>Traffic and Transportation Engineering (English Edition), 2020, 7, 205-214.                                          | 2.0 | 10        |
| 13 | Development of two-dimensional micromechanical, viscoelastic, and heterogeneous-based models for<br>the study of block cracking in asphalt pavements. Construction and Building Materials, 2020, 244,<br>118146.        | 3.2 | 7         |
| 14 | Pavement Image Datasets: A New Benchmark Dataset to Classify and Densify Pavement Distresses.<br>Transportation Research Record, 2020, 2674, 328-339.                                                                   | 1.0 | 94        |
| 15 | Deep machine learning approach to develop a new asphalt pavement condition index. Construction and Building Materials, 2020, 247, 118513.                                                                               | 3.2 | 139       |
| 16 | Investigating short-term and long-term binder performance of high-RAP mixtures containing waste cooking oil. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6, 396-406.                     | 2.0 | 52        |
| 17 | Performance Analysis of Asphalt Mixtures Modified with Ground Tire Rubber Modifiers and Recycled Materials. Sustainability, 2019, 11, 1792.                                                                             | 1.6 | 31        |
| 18 | Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model: theory, implementation, and numerical results. International Journal of Fracture, 2019, 216, 1-29.                                | 1.1 | 17        |

WILLIAM G BUTTLAR

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Performance Evaluation of Asphalt Mixtures with Reclaimed Asphalt Pavement and Recycled Asphalt<br>Shingles in Missouri. Transportation Research Record, 2019, 2673, 392-403.                                                       | 1.0 | 43        |
| 20 | Three-dimensional micromechanical pavement model development for the study of block cracking.<br>Construction and Building Materials, 2019, 206, 35-45.                                                                             | 3.2 | 9         |
| 21 | New machine learning-based prediction models for fracture energy of asphalt mixtures. Measurement:<br>Journal of the International Measurement Confederation, 2019, 135, 438-451.                                                   | 2.5 | 77        |
| 22 | Mechanisms of cracking: characterisation and modelling. Road Materials and Pavement Design, 2018, 19, 495-495.                                                                                                                      | 2.0 | 3         |
| 23 | Evaluation and Life Extension of Asphalt Pavements Using Rejuvenators and Noncollinear Ultrasonic<br>Wave Mixing: A Review. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of<br>Engineering Systems, 2018, 1, . | 0.7 | 4         |
| 24 | Evaluation of low temperature viscoelastic properties and fracture behavior of bio-asphalt mixtures.<br>International Journal of Pavement Engineering, 2018, 19, 362-369.                                                           | 2.2 | 70        |
| 25 | An efficient mixed-mode rate-dependent cohesive fracture model using sigmoidal functions.<br>Engineering Fracture Mechanics, 2018, 192, 307-327.                                                                                    | 2.0 | 20        |
| 26 | Evaluation of Low-Temperature Cracking Performance of Asphalt Pavements Using Acoustic Emission:<br>A Review. Applied Sciences (Switzerland), 2018, 8, 306.                                                                         | 1.3 | 39        |
| 27 | Nondestructive Acoustic Emission Test to Evaluate Thermal Damage in Asphalt Concrete Materials.<br>Journal of Testing and Evaluation, 2018, 46, 118-126.                                                                            | 0.4 | 5         |
| 28 | Spiral cracking pattern in asphalt materials. Materials and Design, 2017, 116, 609-615.                                                                                                                                             | 3.3 | 15        |
| 29 | Performance space diagram for the evaluation of high- and low-temperature asphalt mixture performance. Road Materials and Pavement Design, 2017, 18, 336-358.                                                                       | 2.0 | 29        |
| 30 | Use of Nonlinear Acoustic Measurements for Estimation of Fracture Performance of Aged Asphalt<br>Mixtures. Transportation Research Record, 2017, 2631, 11-19.                                                                       | 1.0 | 9         |
| 31 | Using binder and mixture space diagrams to evaluate the effect of re-refined engine oil bottoms on binders and mixtures after ageing. Road Materials and Pavement Design, 2017, 18, 154-182.                                        | 2.0 | 22        |
| 32 | Nondestructive Low-Temperature Cracking Characterization of Asphalt Materials. Journal of<br>Materials in Civil Engineering, 2017, 29, .                                                                                            | 1.3 | 21        |
| 33 | Acoustic emission quantitative evaluation of rejuvenators to restore embrittlement temperatures to oxidized asphalt mixtures. Construction and Building Materials, 2016, 126, 913-923.                                              | 3.2 | 28        |
| 34 | Characterization of embrittlement temperature of asphalt materials through implementation of acoustic emission technique. Construction and Building Materials, 2016, 111, 147-152.                                                  | 3.2 | 33        |
| 35 | Application of a Coupled Digital Image Correlation and Discrete Element Method Approach to Model<br>Low Temperature Asphalt Concrete Fracture. RILEM Bookseries, 2016, , 713-718.                                                   | 0.2 | 1         |
| 36 | Cooling cycle effects on low temperature cracking characteristics of asphalt concrete mixture.<br>Materials and Structures/Materiaux Et Constructions, 2014, 47, 1359-1371.                                                         | 1.3 | 33        |

WILLIAM G BUTTLAR

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evaluation of Warm Mix Asphalt Mixtures Containing Reclaimed Asphalt Pavement through<br>Mechanical Performance Tests and an Acoustic Emission Approach. Journal of Materials in Civil<br>Engineering, 2013, 25, 1887-1897.           | 1.3 | 94        |
| 38 | IlliTC – low-temperature cracking model for asphalt pavements. Road Materials and Pavement Design, 2013, 14, 57-78.                                                                                                                   | 2.0 | 39        |
| 39 | Cracking resistance of thin-bonded overlays using fracture test, numerical simulations and early field performance. International Journal of Pavement Engineering, 2013, 14, 540-552.                                                 | 2.2 | 14        |
| 40 | Low-Temperature Performance Characterization of Biomodified Asphalt Mixtures that Contain Reclaimed Asphalt Pavement. Transportation Research Record, 2013, 2371, 49-57.                                                              | 1.0 | 62        |
| 41 | Compact tension test for fracture characterization of thin bonded asphalt overlay systems at low temperature. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1207-1220.                                               | 1.3 | 14        |
| 42 | Viscoelastic functionally graded finite element method with recursive time integration and<br>applications to flexible pavements. International Journal for Numerical and Analytical Methods in<br>Geomechanics, 2012, 36, 1194-1219. | 1.7 | 7         |
| 43 | Viscoelastic Functionally Graded Finite-Element Method Using Correspondence Principle. Journal of<br>Materials in Civil Engineering, 2011, 23, 39-48.                                                                                 | 1.3 | 19        |
| 44 | Effects of Recycled Asphalt Pavement Amounts on Low-Temperature Cracking Performance of Asphalt<br>Mixtures Using Acoustic Emissions. Transportation Research Record, 2011, 2208, 64-71.                                              | 1.0 | 112       |
| 45 | Laboratory Mixed-Mode Cracking of Asphalt Concrete Using the Single-Edge Notch Beam. Road<br>Materials and Pavement Design, 2010, 11, 947-968.                                                                                        | 2.0 | 58        |
| 46 | Thermal reflective cracking of asphalt concrete overlays. International Journal of Pavement<br>Engineering, 2010, 11, 477-488.                                                                                                        | 2.2 | 52        |
| 47 | Low Temperature Cracking Prediction with Consideration of Temperature Dependent Bulk and Fracture Properties. Road Materials and Pavement Design, 2010, 11, 33-59.                                                                    | 2.0 | 15        |
| 48 | Rate-dependent fracture modeling of asphalt concrete using the discrete element method. Canadian<br>Journal of Civil Engineering, 2009, 36, 320-330.                                                                                  | 0.7 | 11        |
| 49 | Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model. Construction and Building Materials, 2009, 23, 2112-2120.                                                           | 3.2 | 83        |
| 50 | Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test.<br>Materials and Structures/Materiaux Et Constructions, 2009, 42, 677-689.                                                               | 1.3 | 126       |
| 51 | Simulation of Fracture Behavior in Asphalt Concrete Using a Heterogeneous Cohesive Zone Discrete<br>Element Model. Journal of Materials in Civil Engineering, 2008, 20, 552-563.                                                      | 1.3 | 162       |
| 52 | Effect of Factors Affecting Fracture Energy of Asphalt Concrete at Low Temperature. Road Materials and Pavement Design, 2008, 9, 397-416.                                                                                             | 2.0 | 80        |
| 53 | Influence of the Cohesive Zone Model Shape Parameter on Asphalt Concrete Fracture Behavior. AIP<br>Conference Proceedings, 2008, , .                                                                                                  | 0.3 | 21        |
| 54 | Effect of Binder Type, Aggregate, and Mixture Composition on Fracture Energy of Hot-Mix Asphalt in Cold Climates. Transportation Research Record, 2007, 2001, 102-109.                                                                | 1.0 | 51        |

WILLIAM G BUTTLAR

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Application of Graded Finite Elements for Asphalt Pavements. Journal of Engineering Mechanics - ASCE, 2006, 132, 240-249.                                              | 1.6 | 37        |
| 56 | Simulation of Crack Propagation in Asphalt Concrete Using an Intrinsic Cohesive Zone Model. Journal of Engineering Mechanics - ASCE, 2006, 132, 1215-1223.             | 1.6 | 162       |
| 57 | A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Engineering Fracture Mechanics, 2006, 73, 2829-2848.  | 2.0 | 317       |
| 58 | Investigation of the Fracture Resistance of Hot-Mix Asphalt Concrete Using a Disk-Shaped Compact<br>Tension Test. Transportation Research Record, 2005, 1929, 183-192. | 1.0 | 86        |
| 59 | Micromechanical Fracture Modeling of Asphalt Mixture Using the Discrete Element Method. , 2005, , 1.                                                                   |     | 21        |
| 60 | Adjustment of Measuring Devices With Linear Models. Technometrics, 2004, 46, 127-134.                                                                                  | 1.3 | 5         |
| 61 | Development of a Performance-Related Framework for Asphalt Mixture Design for the Illinois<br>Tollway, Transportation Research Record, 0. , 036119812110148,           | 1.0 | 4         |